Energy policy: real world engineering meets renewables

Even if solar cells themselves were free, solar power would remain very expensive because of the huge structures and support systems required to extract large amounts of electricity from a source so weak that it takes hours to deliver a tan.

This is why the (few) greens ready to accept engineering and economic reality have suddenly emerged as avid proponents of nuclear power. In the aftermath of the Three Mile Island accident—which didn’t harm anyone, and wouldn’t even have damaged the reactor core if the operators had simply kept their hands off the switches and let the automatic safety systems do their job—ostensibly green antinuclear activists unwittingly boosted U.S. coal consumption by about 400 million tons per year. The United States would be in compliance with the Kyoto Protocol today if we could simply undo their handiwork and conjure back into existence the nuclear plants that were in the pipeline in nuclear power’s heyday. Nuclear power is fantastically compact, and—as America’s nuclear navy, several commercial U.S. operators, France, Japan, and a handful of other countries have convincingly established—it’s both safe and cheap wherever engineers are allowed to get on with it.

But getting on with it briskly is essential, because costs hinge on the huge, up-front capital investment in the power plant. Years of delay between the capital investment and when it starts earning a return are ruinous. Most of the developed world has made nuclear power unaffordable by surrounding it with a regulatory process so sluggish and unpredictable that no one will pour a couple of billion dollars into a new plant, for the good reason that no one knows when (or even if) the investment will be allowed to start making money. - Peter W. Huber, 2009

Peter Huber, coauthor of The Bottomless Well, takes a hard look at the options in “Bound to Burn” at City Journal:

(…) Another argument commonly advanced is that getting over carbon will, nevertheless, be comparatively cheap, because it will get us over oil, too—which will impoverish our enemies and save us a bundle at the Pentagon and the Department of Homeland Security. But uranium aside, the most economical substitute for oil is, in fact, electricity generated with coal. Cheap coal-fired electricity has been, is, and will continue to be a substitute for oil, or a substitute for natural gas, which can in turn substitute for oil. By sharply boosting the cost of coal electricity, the war on carbon will make us more dependent on oil, not less.

The first place where coal displaces oil is in the electric power plant itself. When oil prices spiked in the early 1980s, U.S. utilities quickly switched to other fuels, with coal leading the pack; the coal-fired plants now being built in China, India, and other developing countries are displacing diesel generators. More power plants burning coal to produce cheap electricity can also mean less natural gas used to generate electricity. And less used for industrial, commercial, and residential heating, welding, and chemical processing, as these users switch to electrically powered alternatives. The gas that’s freed up this way can then substitute for diesel fuel in heavy trucks, delivery vehicles, and buses. And coal-fired electricity will eventually begin displacing gasoline, too, as soon as plug-in hybrid cars start recharging their batteries directly from the grid.

(…) To top it all, using electricity generated in large part by coal to power our passenger cars would lower carbon emissions—even in Indiana, which generates 75 percent of its electricity with coal. Big power plants are so much more efficient than the gasoline engines in our cars that a plug-in hybrid car running on electricity supplied by Indiana’s current grid still ends up more carbon-frugal than comparable cars burning gasoline in a conventional engine under the hood. Old-guard energy types have been saying this for decades. In a major report released last March, the World Wildlife Fund finally concluded that they were right all along.

But true carbon zealots won’t settle for modest reductions in carbon emissions when fat targets beckon. They see coal-fired electricity as the dragon to slay first. Huge, stationary sources can’t run or hide, and the cost of doing without them doesn’t get rung up in plain view at the gas pump. California, Pennsylvania, and other greener-than-thou states have made flatlining electricity consumption the linchpin of their war on carbon. That is the one certain way to halt the displacement of foreign oil by cheap, domestic electricity.

The oil-coal economics come down to this. Per unit of energy delivered, coal costs about one-fifth as much as oil—but contains one-third more carbon. High carbon taxes (or tradable permits, or any other economic equivalent) sharply narrow the price gap between oil and the one fuel that can displace it worldwide, here and now. The oil nasties will celebrate the green war on carbon as enthusiastically as the coal industry celebrated the green war on uranium 30 years ago.

The other 5 billion are too poor to deny these economic realities. For them, the price to beat is 3-cent coal-fired electricity. China and India won’t trade 3-cent coal for 15-cent wind or 30-cent solar. As for us, if we embrace those economically frivolous alternatives on our own, we will certainly end up doing more harm than good.

Consider your next Google search. As noted in a recent article in Harper’s, “Google . . . and its rivals now head abroad for cheaper, often dirtier power.” Google itself (the “don’t be evil” company) is looking to set up one of its electrically voracious server farms at a site in Lithuania, “disingenuously described as being near a hydroelectric dam.” But Lithuania’s grid is 0.5 percent hydroelectric and 78 percent nuclear. Perhaps the company’s next huge farm will be “near” the Three Gorges Dam in China, built to generate over three times as much power as our own Grand Coulee Dam in Washington State. China will be happy to play along, while it quietly plugs another coal plant into its grid a few pylons down the line. All the while, of course, Google will maintain its low-energy headquarters in California, a state that often boasts of the wise regulatory policies—centered, one is told, on efficiency and conservation—that have made it such a frugal energy user. But in fact, sky-high prices have played the key role, curbing internal demand and propelling the flight from California of power plants, heavy industries, chip fabs, server farms, and much else (see “California’s Potemkin Environmentalism,” Spring 2008).

Please read Huber’s essay top to bottom. I’m confident that reading and reflection will motivate you go on to read The Bottomless Well.
One quibble, Huber writes

They use energy far less efficiently than we do, and they remain almost completely oblivious to environmental impacts, just as we were in our own first century of industrialization.

Three points. One, If the decarbonization data presented in How to Get Climate Policy Back on Course is accurate, then China is at about the same value as the USA of tonnes-CO2 per $1000 of GDP. Point two, if LRL’s Mark Levine is correct in his presentation of Chinese decarbonization policy, then we should see China’s rate of decarbonization improve even faster now that the “policy holiday” taken by Beijing is over. Three, if America continues to ignore the reality of nuclear power, then they may never be able to catch up with China – who already are committed to at least 100 additional AP1000 reactors. All of my sources point to an acceleration of China’s nuclear power deployment. Same is true of India, but so far to a lesser degree.