LNT, UNSCEAR and the NRC “State-of-the-Art Reactor Consequence Analyses”

UNSCEAR 2012 “Therefore, the Scientific Committee does not recommend multiplying very low doses by large numbers of individuals to estimate numbers of radiation-induced health effects within a population exposed to incremental doses at levels equivalent to or lower than natural background levels;”

The main NRC SOARCA page, which indexes the definitive 2012 NRC severe accident study. This study is large so I’ll rely on the NRC’s own words of summary:

SOARCA’s main findings fall into three basic areas: how a reactor accident progresses; how existing systems and emergency measures can affect an accident’s outcome; and how an accident would affect the public’s health. The project’s preliminary findings include:

  • Existing resources and procedures can stop an accident, slow it down or reduce its impact before it can affect public health;
  • Even if accidents proceed uncontrolled, they take much longer to happen and release much less radioactive material than earlier analyses suggested; and
  • The analyzed accidents would cause essentially zero immediate deaths and only a very, very small increase in the risk of long-term cancer deaths.

Rod Adams posted his thorough analysis of UNSCEAR here, which Rod summarizes thusly:

  • The individual early fatality risk from SOARCA scenarios is essentially zero.
  • Individual LCF risk from the selected specific, important scenarios is thousands of times lower than the NRC Safety Goal and millions of times lower than the general cancer fatality risk in the United States from all causes, even assuming the LNT dose-response model.

If I may underscore that last: even assuming the LNT dose-response model For more plain English here’s UK environmentalist Mark Lynas in Why Fukushima death toll projections are based on junk science:

As the Health Physics Society explains[1] in non-scientific language anyone can understand:

…the concept of collective dose has come under attack for some misuses. The biggest example of this is in calculating the numbers of expected health effects from exposing large numbers of people to very small radiation doses. For example, you might predict that, based on the numbers given above, the population of the United States would have about 40,000 fatal cancers from background radiation alone. However, this is unlikely to be true for a number of reasons. Recently, the International Council on Radiation Protection issued a position statement saying that the use of collective dose for prediction of health effects at low exposure levels is not appropriate. The reason for this is that if the most highly exposed person receives a trivial dose, then everyone’s dose will be trivial and we can’t expect anyone to get cancer. [my emphasis]

The HPS illustrates this commonsensical statement with the following analogy:

Another way to look at it is that if I throw a 1-gram rock at everyone in the United States then, using the collective dose model, we could expect 270 people to be crushed to death because throwing a one-ton rock at someone will surely kill them. However, we know this is not the case because nobody will die from a 1-gram rock. The Health Physics Society also recommends not making risk estimates based on low exposure levels.

James Conca explains the UNSCEAR 2012 report, which finally drove a stake into the heart of LNT:

The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (UNSCEAR 2012) submitted the report that, among other things, states that uncertainties at low doses are such that UNSCEAR “does not recommend multiplying low doses by large numbers of individuals to estimate numbers of radiation-induced health effects within a population exposed to incremental doses at levels equivalent to or below natural background levels.” (UNDOC/V1255385)

You know, like everyone’s been doing since Chernobyl. Like everyone’s still doing with Fukushima.

Finally, the world may come to its senses and not waste time on the things that aren’t hurting us and spend time on the things that are. And on the people that are in real need. Like the infrastructure and economic destruction wrought by the tsunami, like cleaning up the actual hot spots around Fukushima, like caring for the tens of thousands of Japanese living in fear of radiation levels so low that the fear itself is the only thing that is hurting them, like seriously preparing to restart their nuclear fleet and listening to the IAEA and the U.S. when we suggest improvements.

The advice on radiation in this report will clarify what can, and cannot, be said about low dose radiation health effects on individuals and large populations. Background doses going from 250 mrem (2.5 mSv) to 350 mrem (3.5 mSv) will not raise cancer rates or have any discernable effects on public health. Likewise, background doses going from 250 mrem (2.5 mSv) to 100 mrem (1 mSv) will not decrease cancer rates or effect any other public health issue.

Note – although most discussions are for acute doses (all at once) the same amount as a chronic dose (metered out over a longer time period like a year) is even less effecting. So 10 rem (0.1 Sv) per year, either as acute or chronic, has no observable effect, while 10 rem per month might.

UNSCEAR also found no observable health effects from last year’s nuclear accident in Fukushima. No effects.

The Japanese people can start eating their own food again, and moving back into areas only lightly contaminated with radiation levels that are similar to background in many areas of the world like Colorado and Brazil.

Low-level contaminated soil, leaves and debris in Fukushima Prefecture piling up in temporary storage areas. (Photo by James Hackett, RJLee Group)

The huge waste of money that is passing for clean-up now by just moving around dirt and leaves (NYTimes) can be focused on clean-up of real contamination near Fukushima using modern technologies. The economic and psychological harm wrought by the wrong-headed adoption of linear no-threshold dose effects for doses less than 0.1 Sv (10 rem) has been extremely harmful to the already stressed population of Japan, and to continue it would be criminal.

To recap LNT, the Linear No-Threshold Dose hypothesis is a supposition that all radiation is deadly and there is no dose below which harmful effects will not occur. Double the dose, double the cancers. First put forward after WWII by Hermann Muller, and adopted by the world body, including UNSCEAR, its primary use was as a Cold War bargaining chip to force cessation of nuclear weapons testing. The fear of radiation that took over the worldview was a side-effect (Did Muller Lie?).

(…snip…)

In the end, if we don’t reorient ourselves on what is true about radiation and not on the fear, we will fail the citizens of Japan, Belarus and the Ukraine, and we will continue to spend time and money on the wrong things…

That’s just Jim’s summary – please read his complete essay for the charts, tables and implications for Japan. And did Muller Lie? The evidence seems pretty conclusive that all this enormous waste of resources was based on a lie. Not to mention the fear, and in the case of Fukushima at least a thousand unnecessary deaths due to the panic and mismanagement of the evacuation.

Footnotes:

[1] While link testing, I found that Mark’s HPS link fails – that’s the Internet. Here’s the most recent HPS position statement I could find this morning. Radiation Risk In Perspective: Position Statement Of The Health Physics Society (updated 2010) 

In accordance with current knowledge of radiation health risks, the Health Physics Society recommends against quantitative estimation of health risks below an individual dose1 of 50 millisievert (mSv) in one year or a lifetime dose of 100 mSv above that received from natural sources. Doses from natural background radiation in the United States average about 3 mSv per year. A dose of 50 mSv will be accumulated in the first 17 years of life and 0.25 Sv in a lifetime of 80 years. Estimation of health risk associated with radiation doses that are of similar magnitude as those received from natural sources should be strictly qualitative and encompass a range of hypothetical health outcomes, including the possibility of no adverse health effects at such low levels.

There is substantial and convincing scientific evidence for health risks following high-dose exposures. However, below 50– 100 mSv (which includes occupational and environmental exposures), risks of health effects are either too small to be observed or are nonexistent.

[2] Environmentalist Stewart Brand on the retirement of LNT.

[3] Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) Fifty-ninth session (21-25 May 2012) [PDF]. 

[4] EPA’s decision to allow risk-based decisions to guide responses to radiological events

What do you think? (first time comments are moderated)

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s