We need an Energy Miracle — Here is How to Create that Miracle

Fact #1: Fossil Fuels continue to dominate global energy

M

Fact #2: Globally we are out of time – now need to increase decarbonization rate by factor of five. From PWC: Low Carbon Economy Index 2014 | 2 degrees of separation: ambition and reality

These two charts should make it clear that what we have been doing to eliminate fossil fuels is not working. This week we have seen more of the same non-functional, heat-but-no-light activity signified by a Feel-Good Climate March. Many of the marchers carried Anti-Nuclear signage. No doubt these are nice, sincere people. These are not serious people – they are not serious about climate change.

Harvard's Joseph Lassiter is serious about climate change. He is Professor of Management Practice in Environmental Management at Harvard Business School. Among his specialities is low carbon energy policies. He has just published the perfect response to the climate march feel-gooders. In this short essay Dr. Lassiter makes the essential points which I'll summarize as:

  1. Fossil fuel continues to dominate while both IEA and EIA forecast continuing fossil growth.
  2. We need an energy miracle.
  3. “That miracle comes in the form of “New Nuclear” power plants.”
  4. “The barriers to rapid progress in New Nuclear are not technical, not even economic. The barriers are in the outdated nuclear regulations that scare off private investors and in the nuclear industry-regulatory culture that accepts timelines measured in decades as normal. The world needs a New Nuclear miracle today.”
  5. “The US, EU and Japan have the technology infrastructure and the dynamic, startup companies to bring New Nuclear to the table quickly.”

Quoting Lassiter directly:

Entrepreneurs in the US, EU and Japan have the ideas. China and India and every other developing economy have the clear and compelling need. But to convert these new ideas into real alternatives, the world’s governments need to act. They must redesign their nuclear regulatory practices and provide physical facilities for prototype evaluation that will let private capital take on the tasks of technical innovation, experimentation, and rigorous stress testing, even as the eventual permitting authority remains with public regulators. Innovation and regulation must proceed hand-in-hand, but regulators must allow entrepreneurs to pursue their innovations with a relentless urgency that matches the severity of the unknowable threats that the world faces from global warming and ocean acidification.

Please read the entire essay, then send the essay to your elected representative, telling her that you expect to see legislation to reform nuclear regulation and also government support for the rapid development of New Nuclear. Thanks heaps to John Morgan @JohnDPMorgan for referring me to the Lassiter essay.

The Economist on past and future emissions cuts

 

Chart 1 – click to embiggen

The above graphic is from The deepest cuts, a contribution fromThe Economist to grappling with the “big picture” on effective carbon avoidance strategies.There are some obvious problems with the numbers in Chart 1 – particularly the Cumulative Emissions avoided by Hydropower and Nuclear. There are also some very big issues with the Chart 2 where authors attempt to project the carbon avoidance situation in 2020. I  addressed some of these issues in my comments to the article:

I hope this is just the beginning of an ongoing Economist project to refine and update an understanding of what is working, what is not working – all in the context of the essential measure of cost/benefit, specifically cost-per-ton-CO2-avoided.

I need to highlight a few errors in your data presentation. In your Chart 1 you report Cumulative Emissions Avoided for both Hydropower and Nuclear that understate the actual avoidance by roughly thirty times. Nuclear and hydropower avoidance should be about 64 and 90 GtCO2-eq respectively vs. your 2.2 and 2.8 GtCO2-eq. I derived these values from two sources. First, the IAEA report you referenced Climate Change And Nuclear Power 2013 states on page 14

Over the past 50 years, the use of nuclear power has resulted in the avoidance of significant amounts of GHG emissions around the world. Globally, the amount of avoided emissions is comparable to that from hydropower.

From inspection of IAEA FIG. 5 we can see that cumulative historical Hydropower avoidance is very roughly 25 GtCO2-eq greater than the nuclear avoidance, but otherwise similar. But what is the cumulative avoidance? in “Prevented mortality and greenhouse gas emissions from historical and projected nuclear power” Pushker and Hansen, 2013 calculated that the cumulative global CO2 emissions emissions avoided by nuclear power is 64 GtCO2-eq. Here’s their Figure 3, page 12 for both historical and projected emissions avoided:

Click to embiggen

The authors calculated the 64 GtCO2-eq avoidance based on a different IAEA source document: Energy, Electricity and Nuclear Power Estimates for the Period up to 2050: 2011 Edition; International Atomic Energy Agency, 2011.

Is 64 GtCO2-eq a big number? It is a Very Big Number, as Pushker and Hansen 2013 contrast to 35 years of USA coal emissions:

For instance, 64 GtCO2-eq amounts to the cumulative CO2 emissions from coal burning over approximately the past 35 yr in USA


Chart 2: Click to embiggen

Regarding your Chart 2, forecasting “the policies likely to have the biggest impact in 2020″ is a courageous undertaking. To make useful projections requires a deep knowledge of the energy industry, the electric power industry, economic forecasting and the political trends of the significant emitting countries. That is a Very Big Ask, so I decided to have a look for related work by the firm retained by The Economist: namely Climate Action Tracker. The principles of this consulting firm are listed as Dr. Bill Hare, Dr. Niklas Höhne, Dr. Johannes Gütschow and Dr. Michiel Schaeffer. The first three gentlemen are affiliated with the Potsdam Institute for Climate Impacts Research (PIK). That affiliation immediately boosted my estimate of the Climate Action Tracker qualifications because I have been studying the work of other PIK researchers who have been publishing very important and original work on the difficult subject of integrating variable renewable generation sources, especially at potentially high future penetration levels. This work requires a deep understanding of electric power systems. In particular I will recommend these three PIK papers:

  1. Hirth, Lion, The Optimal Share of Variable Renewables. How the Variability of Wind and Solar Power Affects Their Welfare-Optimal Deployment (November 8, 2013). FEEM Working Paper No. 90.2013. Available at SSRN: http://ssrn.com/abstract=2351754 or http://dx.doi.org/10.2139/ssrn.2351754
  2. Ueckerdt, Falko and Hirth, Lion and Luderer, Gunnar and Edenhofer, Ottmar, System LCOE: What are the Costs of Variable Renewables? (January 14, 2013). Available at SSRN: http://ssrn.com/abstract=2200572 or http://dx.doi.org/10.2139/ssrn.2200572
  3. Hirth, Lion and Ueckerdt, Falko and Edenhofer, Ottmar, Why Wind is Not Coal: On the Economics of Electricity (April 24, 2014). FEEM Working Paper No. 39.2014. Available at SSRN: http://ssrn.com/abstract=2428788 or http://dx.doi.org/10.2139/ssrn.2428788

What I found in an afternoon of Internet research on Climate Action Tracker gives me concern about the Chart 2 conclusions. You have probably noticed in Chart 2 that in the six short years to 2020 nuclear power has become so insignificant it doesn’t even make the top-eleven list. That is puzzling, as nuclear power is currently the largest source of non-hydro emission-free electricity.

I confess that all of my searching for anything related to nuclear power trends in publications by Climate Action Tracker principles is alone update:  Climate Action Tracker Update, 30 November 2012 from which I have extracted the only two, widely separated paragraphs wherein nuclear is even mentioned:

…Society also would lose the ability to choose whether it wants technologies like carbon capture and storage and nuclear energy, because those, along with bio-energy, would likely have to be deployed on a larger scale.

…More pressure on future policy requirements. For example, full global participation would be required after 2020, and society may have little freedom to choose technologies, such as the freedom to reject large-scale nuclear energy, CCS, or bio-energy.

The only way I can read these comments is that the authors political view is that nuclear power should be rejected. This supports my conclusion that the members of Climate Action Tracker are possibly experts in climate science, but perhaps not so expert in the electric power industry and the economics of energy. The economics is fundamental to policies that can be implemented in the real world.

Renewables are making no progress against coal

No doubt you’ve heard that Friends of the Earth recently announced their primary objection to nuclear power is now because it is too slow to build and too costly.

I would like to introduce FOE to the data embodied in Roger Pielke Jr’s graphic. I’ve modified Roger’s chart to illustrate the only energy policy that has succeeded to rapidly displace fossil fuels at utility scale. My crude green slope indicator highlights the period when France, Sweden, Belgium, Canada, United States, Germany, Japan, Switzerland and others built their nuclear power fleets. The absence of further progress since 1995 shows the stark reality of how little has been achieved by the billions dollars of taxpayer wealth that has been spent on renewable subsidies since Kyoto. The following chart contrasts the speed and scale of the nuclear build with the  slow build of the whole suite of “renewables” (many thanks to  Geoff Russell & The Breakthrough for one of my favorite charts).

Roger’s short Breakthrough essay is the source of the original chart:

The data shows that for several decades the world has seen a halt in progress towards less carbon-intensive energy consumption, at about 13 percent of the total global supply. This stagnation provides further evidence that the policies that have been employed to accelerate rates of decarbonization of the global economy have been largely ineffective. The world was moving faster towards decarbonizing its energy mix long before climate policy became fashionable. Why this was so and what the future might hold will be the subject of future posts in this continuing discussion.

If you are keen to learn what makes for effective decarbonization policies, then you are likely to also enjoy Roger’s The Climate Fix. For an Executive Summary of the concepts see A Primer on How to Avoid Magical Solutions in Climate Policy.

The more you know about nuclear power the more you like it, Part 2

This is a sequel to The more you know about nuclear power the more you like it, Part 1, where I promised to look at the relative nuclear support amongst print and TV media, scientists and the public. A personal favorite technical source on nuclear power is prof. Bernard Cohen’s textbook The Nuclear Energy Option. While the book is out of print there is a very well-executed online version. For this post we need Chapter 4 Is The Public Ready For More Nuclear Power?

Prof. Cohen analyzed a broad range of opinion surveys that were available at the time of writing ~1990. Here I just want to focus on the hypothesis that “The more you know about nuclear power the more you like it.” If we collected fresh surveys today we might find the absolute levels a bit different, but I claim the relative proportions should be very similar. Here’s the relevant paragraphs from Chapter 4:

While public support of nuclear power has only recently been turning favorable, the scientific community has always been steadfastly supportive. In 1980, at the peak of public rejection, Stanley Rothman and Robert Lichter, social scientists from Smith College and Columbia University, respectively, conducted a poll of a random sample of scientists listed in American Men and Women of Science, The “Who’s Who” of scientists.1 They received a total of 741 replies. They categorized 249 of these respondents as “energy experts” based on their specializing in energy-related fields rather broadly defined to include such disciplines as atmospheric chemistry, solar energy, conservation, and ecology. They also categorized 72 as nuclear scientists based on fields of specialization ranging from radiation genetics to reactor physics. Some of their results are listed in Table 1.

NewImage

From Table 1 we see that 89% of all scientists, 95% of scientists involved in energy-related fields, and 100% of radiation and nuclear scientists favored proceeding with the development of nuclear power. Incidentally, there were no significant differences between responses from those employed by industry, government, and universities. There was also no difference between those who had and had not received financial support from industry or the government.

Another interesting question was whether the scientists would be willing to locate nuclear plants in cities in which they live (actually, no nuclear plants are built within 20 miles of heavily populated areas). The percentage saying that they were willing was 69% for all scientists, 80% for those in energy-related sciences, and 98% for radiation and nuclear scientists. This was in direct contrast to the 56% of the general public that said it was not willing.

Rothman and Lichter also surveyed opinions of various categories of media journalists and developed ratings for their support of nuclear energy. Their results are shown in Table 2. [which I’ve rendered in chart form]

Click to embiggen

We see that scientists are much more supportive of nuclear power than journalists, and press journalists are much more supportive than the TV people who have had most of the influence on the public, even though they normally have less time to investigate in depth. There is also a tendency for science journalists to be more supportive then other journalists.

In summary, these Rothman-Lichter surveys show that scientists have been much more supportive of nuclear power than the public or the TV reporters, producers, and journalists who “educate” them. Among scientists, the closer their specialty to nuclear science, the more supportive they are. This is not much influenced by job security considerations, since the level of support is the same for those employed by universities, where tenure rules protect jobs, as it is for those employed in industry. Moreover, job security for energy scientists is not affected by the status of the nuclear industry because they are largely employed in enterprises competing with nuclear energy. In fact, most nuclear scientists work in research on radiation and the ultimate nature of matter, and are thus not affected by the status of the nuclear power industry. Even among journalists, those who are most knowledgeable are the most supportive. The pattern is very clear — the more one knows about nuclear power, the more supportive one becomes.

For the 2014 perspective, please read Geoff Russell’s wonderful new book GreenJacked! The derailing of environmental action on climate change

Geoff articulates how Greenpeace, Friends of the Earth, Sierra Club and the like thwarted the substitution of clean nuclear for dirty coal. Those organizations could not admit today what will be completely obvious after reading Greenjacked!: that if they had supported nuclear power from the 1960s to today, then all of the developed world could easily have been like France, Sweden and Ontario province — powering advanced societies with nearly carbon-free nuclear energy.

The more you know about nuclear power the more you like it, Part 1


Image and caption credit Chattanooga Times Free Press: Houses in the Hunter Trace subdivision in north Hamilton County are within a few hundred yards of the Sequoyah Nuclear Power Plant near Soddy-Daisy. Neighbors to the nuclear plant say they don’t mind living close to the TVA plant. Staff Photo by Dave Flessner

In 2002 I started looking into our low-carbon energy options. Over the next two years I learned there is no perfect-zero-carbon energy option. I learned that realistic low-carbon energy policy is about deploying scaleable and affordable electricity generation. To my surprise, like the five environmentalists of Pandora’s Promise, I discovered that my anti-nuclear view was based on fictions. I had carried around “The Washington Post accepted” wisdom for decades without ever asking “Why is that true?”

As I was studying the nuclear option, it became blindingly obvious that the people who feared nuclear knew essentially nothing about the subject. Conversely the people who were most knowledgeable about nuclear supported large-scale nuclear deployment as a practical way to replace coal.

And, very interesting, the people who live in the neighborhoods of existing nuclear plants tend to be very favorable to building more nuclear. Including new nuclear plants to be constructed literally “In their own back yard”, a reversal of the expected NIMBY attitudes. Of course there are economic benefits to the neighbors of a plant, including the taxes paid to the regional government entity. The economic incentives gave people a reason to want to be there, so it motivated them to ask some serious questions:

  • “Should I buy a home near that nuclear plant?”
  • “Will my children be harmed?”
  • “What if there is an accident?”

From reading the recent NEI annual polls I developed an untested hypothesis: the more contact you have with people who work at a nearby nuclear plant, the less you fear nuclear and the more you appreciate the benefits of clean electricity. It’s easy to informally ask your neighbors “what’s the truth?” about things that worry you. And you learn the people who operate the plant are just as devoted to their children as you are.

Here is another encouraging trend: there are significant numbers “voting with their feet” by moving into nuclear plant neighborhoods.

USA 2010 census: the population living within 10 miles of nuclear power plants rose by 17 percent in the past decade.

And if you read the same surveys that I did you will see how strongly the neighbors’ attitudes contrast to the typical media fear-mongering. Examples:

Neighbor of the Sequoyah Nuclear Power Plant “This is a safer neighborhood than most areas and I really don’t think much about the plant, other than it provides a great walking area for me,” said Blanche DeVries, who moved near Sequoyah three years ago.

NEI 2013 survey similar to 2005, 2007, 2009, and 2011 “familiarity with nuclear energy leads to support.” 

NEI 2013 survey “80 percent agree with keeping the option to build more nuclear power plants in the future”

BBC Living near a nuclear power station

  • Q: “What’s it like to have a reactor on the doorstep?”
  • A: “I live not more than 100 yards…and it doesn’t worry me.”

NEI survey 2009: “Eighty-four percent of Americans living near nuclear power plants favor nuclear energy, while an even greater number—90 percent―view the local power station positively, and 76 percent support construction of a new reactor near them, according to a new public opinion survey of more than 1,100 adults across the United States.”

NEI survey 2013 [PDF]: “81 percent of residents near commercial reactors favor the use of nuclear energy, 47 percent strongly.”

NewImage

UK 2013 Why we love living next to a nuclear power plant: “It’s cheap, it’s quiet and, say the residents of Dungeness, blissfully safe”. “Here, by contrast, everyone I talk to enthuses about a strong feeling of security and a rare kind of community spirit. Put simply, they live in houses that happen to be next door to a nuclear power station because it makes them feel safe.”

Next we will look at the relative nuclear support amongst print & TV media, scientists and the public The more you know about nuclear power the more you like it, Part 2.

Why the Kyoto Protocol Failed and a New Way Forward

The Breakthrough Institute @TheBTI continues to do some of the best work on energy policy that is sensitive to both energy-poverty and to politically achievable climate policy. Steve Rayner is one of the authors of the pivotal Hartwell Paper. I’m confident you will enjoy and share “Why the Kyoto Protocol Failed and a New Way Forward“. It’s a lot of perspective in only eight minutes.

WaterInTheWest: technical solutions to California’s water crisis

Stanford’s NewImageWaterInTheWest program is an important resource for anyone wishing to study technical solutions to the California water crisis. E.g., consider the possibility of artificial groundwater recharge?

Now in its third year, the current drought reminds us that California’s water supplies are limited. Calls are growing louder to enlarge dams – or build new ones – to expand the state’s water storage capacity. But far less attention is given to a cheaper but less visible option – storing water under our feet.

Groundwater storage represents both a practical solution to the state’s additional water storage needs and a tool to help manage groundwater more sustainably. Groundwater levels are continuing to decline across the state, not just from California’s current drought, but from decades of chronic overuse. Augmenting water supply through recharge into aquifers presents a cost-effective way of increasing the availability of groundwater for the inevitable dry times ahead.

There are so many water-related resources that I won’t attempt to summarize. Go to the WaterInTheWest site, explore. Then you will be better-equipped to address the really-big challenge: political change. 

We know from Economics 101 that any less-than-infinite water supplies will be squandered unless water is fully priced at its economic value (i.e., marginal cost equals marginal value). My understanding of the political challenge is that agriculture was given nearly-free access at the beginning of the water infrastructure development. The farmers are politically powerful enough to (so far) defeat every market-pricing initiative. Since agriculture consumes 80% of CA water we know that fiddling with household consumption is another “feel good” policy. Once California water consumers have to pay market prices, then technical solutions like artificial groundwater recharge become financeable.

That political change is possibly more difficult than getting US, EU, China, India, and Brazil to agree to a harmonized carbon tax. So the chance of a sensible CA water policy solution is approximately zero until things get seriously bad: perhaps when there are crop failures and people dying because they no longer have adequate access to sanitation and clean drinking water. That seems to be how democracies make unpleasant changes – at the cliff edge, or over the cliff.

CCS: If we can capture the CO2 affordably, do we have to store it on the moon?

VeloxoTherm

Since 2007 Canadian startup Inventys Thermal Technologies has been developing carbon capture technology based upon a new honeycomb activated charcoal adsorbent. They claim their “VeloxoTherm™ process is less than one-third the cost of existing post-combustion CO2 capture technologies and will finally enable the widespread adoption of enhanced oil recovery and carbon sequestration.” That’s USD $15 per tonne – but doesn’t include any of the cost of transport and storage to implement CCS (or enhanced recovery, the primary current market for CO2).

Existing pilot scale carbon capture from flue gas installations are expensive and energy intensive, with industrial scale installations expected to add 40 to 50% to LCOE of coal-based electricity.

Ucilia Wang‘s article describes recent Series B round financing that I read as indicative they may be on to something that could be close enough to affordable to get some adoption.  Chevron Technology Ventures joined the B round for an undisclosed amount. Steven Chu, former US Energy Secretary, joined the board in Dec 2013. That’s another indicator that there is something here. Given a carbon price of $25/tonne CO2, let’s hope that this process proves to be scaleable and “affordable”.

But where will utilities be allowed to store the captured CO2? Nuclear waste is produced in very small athletic-field scale volumes, and is safe to store in available geological formations – as well as perfectly safe to manage in dry cask storage at central repositories (think stadium-sized parking lots). I would be happy to have either one in my neighborhood. But to be useful as a GHG emissions strategy, CO2 storage involves volumes that are so large that the public is going to have real trouble grasping the scale. Unlike nuclear waste, there is comparatively larger risk of future CO2 leaks. Radioisotopes decay back to the level of the original rocks, only about 300 years for 4th generation nuclear waste. This CO2 needs to be “imprisoned” forever.

Will the NIMBYs and BANANAs ever allow these giant CO2 repositories on Earth? Or do we have to ship it to the Moon?

Roger Pielke Jr. on FiveThirtyEight and his Climate Critics

NewImage

Keith Kloor published an interview with Roger to discuss the Twitter-storm and blog-o-gale that blew up when Roger offended the climate-hawks by publishing on FiveThirtyEight a summary of his academic publications on disaster losses.

The attacks on prof. Pielke came from the usual suspects, but this time elites such as Paul Krugman and Obama advisor John Holdren piled on. The fragments that crossed my desk were examples of “non-contact criticism”. By that I mean they ignored Roger’s published work (including Congressional testimony, blog posts and public appearances). Instead the attacker applied the demon-label of “climate denier” and then proceeded to shred various straw man positions that Roger has never argued.

My view is that there’s nothing newly provocative in Roger’s FiveThirtyEight article. It expresses the science behind what we know about connections between global climate change and severe weather events like Katrina. What is new is that Roger was published by a hot new website illuminated by Nate Silver’s fame. The hawks evidently thought “this is too dangerous, to have a scientist explaining to Joe Six Pack why we can’t attribute every tornado to Global Warming”.

I’ve been reading Roger Pielke Jr. for at least a decade – motivated by his research and writing on science policy advice. I learned most of what I know about science policy from his numerous policy blog posts and from his 2007 book The Honest Broker.

Roger’s science policy background prepared him well to contribute to the group of thinkers that produced The Hartwell Paper, which I first encountered in Kyoto Wrong Trousers: Radically Rethinking Climate Policy. There you will find climate policy ideas appropriate for the real world where politicians and economics operate. Then came Roger’s book The Climate Fix: What Scientists And Politicians Won’t Tell You About Global Warming. That’s the book I recommend to associates for training on how to advocate for effective policies. Hint: Kyoto isn’t one of those policies. 

In 2008 Roger joined The Breakthrough Institute, which is populated by other serious people who are focused on changing the world (really). BTI has adopted much of the thinking behind The Hartwell Paper – so not surprisingly several of Roger’s Hartwell colleagues are now working with the institute. E.g., Steve Rayner. And Nature Conservancy Chief Scientist Peter Kareiva.

Through all this reading I have observed Roger “calling it the way he sees it”. Consistently I have found Roger’s writings to align with what I think is the objective truth cast into pragmatic policy options. 

Kerry Emanuel: An Obligation to Take on ‘Tail Risk’ vs. Alarmism

On the 24 March Econtalk Russ Roberts interviewed John Christy and Kerry Emanuel. Prof. Roberts is very effective at moderating an informal debate like this – he keeps each party focused on reply and rebuttal to the key points. This is far more effective than the usual “debate” where each side essentially repeats prepared talking points, with very little contact with the arguments made by the opposition.

I have been following the writings of MIT prof. Kerry Emanuel for a long time. Besides his climate science expertise, he has been an effective voice for pragmatic carbon policy that includes nuclear power. E.g., on 3 November Dr. Emanuel and three other top climate scientists joined together in an open letter directed to the Baptists in the “Bootleggers and Baptists” coalition that have made it impossible to make any real progress decarbonizing the global economy.

Related posts on Kerry Emanuel’s work are Enviros and climate scientists continue their fight over nuclear power, and Kerry Emanuel: Reddit AMA on climate change and severe weather.

Though I’ve not reviewed the book here, I highly recommend Emanuel’s compact primer What we know about climate change. It is a remarkably short, apolitical and information-dense survey of a complex subject.

In the above-captioned short essay by Emanuel, he takes a similar theme to the Econtalk interview — that to develop effective climate/energy policy we need to focus on the risk management. It won’t be a surprise that I support Kerry Emanuel’s risk framing — because that is how I look at climate policies. I think we need to keep our attention on both mitigation and adaption policy options. Generating more policy options is how we get better results (exactly the opposite of what activists want – which is to limit our options to the activists’ preferred technology/approach).

This is all about risk – and risk appraisal and management are skills that we humans do not manage well at all.