EROI — A Tool To Predict The Best Energy Mix

I’m happy to see that Forbes contributor James Conca has taken on the central EROI issue — what John Morgan termed the The Catch-22 of Energy Storage. In today’s essay EROI — A Tool To Predict The Best Energy Mix Jim engages directly with the reality that affordable utility-scale storage does NOT make solar PV and biomass into big winners in the future low-carbon energy portfolio. Jim contributed an effective new chart that combines both the with-storage and without-storage EROI profiles. The dotted line at EROI = 7 represents an estimate of the minimum performance required to support a modern industrial society, as represented by the OECD countries.

NewImage

Both John Morgan and Jim Conca based their analysis on the important 2013 paper by Weißbach et al (ungated preprint) published in Energy, Volume 52, 1 April 2013, Pages 210–221.

I want to emphasize that not only is this paper a major conceptual contribution to the energy policy, it is also a model of transparency. Included in the supplementals of the Weißbach et al. paper – are the spreadsheets containing all the materials reference data, assumptions and the EROI and EMROI computations. This means that any motivated reader can audit every detail of the energy inputs, material requirements and computations.

If any reader objects to any of the assumptions they are free to amend the Weisbach spreadsheets to compute their own preferred EROI profiles.

An excellent example of the transparency benefit of the Weisbach spreadsheet contribution is Keith Pickering’s GETTING TO ZERO: Is renewable energy economically viable? Keith used the Weißach model to analyze the progressively improving EROI of nuclear fission. 

With 100% centrifuge, nuclear will have an EROI of 106, EMROI of 166 according to Weißbach’s analysis.

Here’s an earlier 8/13/14 Seekerblog post on the Morgan and Weißach work.

Can you build a wind turbine without fossil fuels?

Wind

Robert Wilson addressed the captioned question in Wind Turbines and Fuel Used in Creation. Robert summarized the materials required for wind nameplate generation capacity:

On average 1 MW of wind capacity requires 103 tonnes of stainless steel, 402 tonnes of concrete, 6.8 tonnes of fiberglass, 3 tonnes of copper and 20 tonnes of cast iron. The elegant blades are made of fiberglass, the skyscraper sized tower of steel, and the base of concrete.

I think of the captioned question from a slightly different angle:

If we have a grid powered only by wind power — will we be able to replace the aging turbines at their 20 to 25 year end-of-life?

I think the answer to my question is

  1. We must synthesize a substitute for the diesel fuel.
  2. We will still need coal and/or natural gas for steelmaking and cement.
  3. Regardless of chemistry we will need a LOT of reliable, clean energy to manufacture the replacement wind turbines every 25 years or so.

To synthesize all those fuels you will want to have plenty of low-carbon nuclear electricity. And the chemistry of both steel and concrete production will continue to produce large volumes of CO2 (absent innovations I’m not aware of).

Robert walks the reader through the steel supply chain from ore mining and transport, to the blast furnace that converts the iron ore into steel. Every step requires (steel) heavy machinery and copious fossil fuel to power the engines. The final stages require either or both coal (coke for the iron ore to iron reduction) and natural gas. From Chemistry Explained:

Steel furnaces. In the steel furnace, sulfur and phosphorus impurities and excess carbon are burned away, and manganese and other alloying ingredients are added. During the nineteenth century most steel was made by the Bessemer process, using big pear-shaped converters. During the first half of the twentieth century, the open hearth furnace became the main type of steel furnace. This gave way mid-century to the basic oxygen process, which used pure oxygen instead of air, cutting the process time from all day to just a few hours. In the twenty-first century, most new steel plants use electric furnaces, the most popular being the electric-arc furnace. It is cheaper to build and more efficient to operate than the basic oxygen furnace. In the electric-arc furnace a powerful electric current jumps (or arcs) between the electrodes, generating intense heat, which melts the iron scrap that is typically fed into it.

The most modern process for making steel is the continuous process, which bypasses the energy requirements of the blast furnace. Instead of using coke, the iron ore is reduced by hydrogen and CO derived from natural gas. This direct reduction method is especially being used in developing countries where there are not any large steel plants already in operation. 

The 402 tons of concrete per MW of nameplate capacity requires the similarly challenging cement supply chain (from US EIA)

NewImage(…snip…) the most energy-intensive of all manufacturing industries, with a share of national energy use roughly 10 times its share of the nation’s gross output of goods and services. (…snip…) Cement is also unique in its heavy reliance on coal and petroleum coke.

 

 And because wind capacity factors are typically 25 to 35% in excellent productivity areas, and because we are assuming that the electric grid depends entirely on 100% wind power, then we will have to build 3 to 4 times as many wind turbines as the nameplate capacity promises. That’s a lot of concrete and a lot of steel. Back to Robert Wilson, who concludes with this:

Total cement production currently represents about 5% of global carbon dioxide emissions, to go with the almost 7% from iron and steel production. Not loose change.

In conclusion we obviously cannot build wind turbines on a large scale without fossil fuels.

Now, none of this is to argue against wind turbines, it is simply arguing against over-promising what can be achieved. It also should be pointed out that we cannot build a nuclear power plant, or any piece of large infrastrtucture for that matter, without concrete or steel. A future entirely without fossil fuels may be desirable, but currently it is not achievable. Expectations must be set accordingly.

 

The Great Progressive Reversal: how the TVA supporters became the prison jailers of the developing poor

It wasn’t long before environmental groups came to oppose nearly all forms of grid electricity in poor countries, whether from dams, coal or nuclear.

“Giving society cheap, abundant energy, would be the equivalent of giving an idiot child a machine gun.” —Paul Ehrlich 1975

Prof. Erlich continues to preach the same theme, which is essentially the low energy hymnal as written by Amory Lovins. I think Erlich and Lovins are completely on the wrong side of the low-energy/high-energy debate. If you are an Amory Lovins believer I hope to persuade you to read The Breakthrough Institute’s concise briefing document Our High-Energy Planet. Arizona State University's Dan Sarewitz is one of my trusted sources on science policy issues. Here’s Dan’s summary of the choice between high-energy and low-energy policies:

“Climate change can’t be solved on the backs of the world’s poorest people,” said Daniel Sarewitz, coauthor and director of ASU’s Consortium for Science, Policy, and Outcomes. “The key to solving for both climate and poverty is helping nations build innovative energy systems that can deliver cheap, clean, and reliable power.”

If, after reading Our High Energy Planet, you are still thinking that we already have all the tech required, that all we need to address climate change is more efficiency and renewables, then I recommend that you need to learn more about the staggering magnitude of the energy transition required. Start with energy expert Vaclav Smil’s Power Density Primer, then his Energy Transitions and finally Will nine billion people exhaust our materials resources?

If, like me, you are puzzling over how the former protectors of the energy-impoverished have transformed into the prison guards responsible for preventing their escape, their breakout from the energy-poverty jail — then read the captioned three-part The Great Progressive Reversal. This is a very different history than what I was taught in public schools, even university. When I studied civics and social history the prevailing progressive theme was the signature New Deal program of the TVA, the Tennessee Valley Authority.

(…snip…) In 1933 Congress and President Roosevelt authorized the creation of the Tennessee Valley Authority. It mobilized thousands of unemployed men to build hydroelectric dams, produce fertilizer, and lay down irrigation systems. Sensitive to local knowledge, government workers acted as community organizers, empowering local farmers to lead the efforts to improve agricultural techniques and plant trees.

The TVA produced cheap energy and restored the natural environment. Electricity from the dams allowed poor residents to stop burning wood for fuel. It facilitated the cheap production of fertilizer and powered the water pumps for irrigation, allowing farmers to grow more food on less land. These changes lifted incomes and allowed forests to grow back. Although dams displaced thousands of people, they provided electricity for millions.

By the 50s, the TVA was the crown jewel of the New Deal and one of the greatest triumphs of centralized planning in the West. It was viewed around the world as a model for how governments could use modern energy, infrastructure and agricultural assistance to lift up small farmers, grow the economy, and save the environment. Recent research suggests that the TVA accelerated economic development in the region much more than in surrounding and similar regions and proved a boon to the national economy as well.

Perhaps most important, the TVA established the progressive principle that cheap energy for all was a public good, not a private enterprise. When an effort was made in the mid-'50s to privatize part of the TVA, it was beaten back by Senator Al Gore Sr. The TVA implicitly established modern energy as a fundamental human right that should not be denied out of deference to private property and free markets.

From The Great Progressive Reversal I learned how the progressive movement mutated into what it is today, a supporter of anti-progress development policies. The three-part series concludes with this:

Since Ehrlich made his famous prediction, the global death rate declined from 13 to 9 deaths per 1,000 lives, and India’s fertility rate declined from 5.5 to 2.5, thanks not to forced sterilization's and cutting off food aid, as Ehrlich advocated, but due to the continuing development and modernization of Indian society.

If there is to be a solution to global warming, then it is as likely to come from the rising powers of the global East and South than the superannuated precincts of the West. “Old men like to offer good advice,” Bruckner writes, quoting the 18th-century philosopher François de la Rouchefoucauld, “in order to console themselves for no longer being in a position to give bad examples.”

 

 

System LCOE and minimizing GHG avoidance costs

Recent references on full life cycle costing of electricity generation options – including accounting for intermittency and integration costs.

Why the Best Path to a Low-Carbon Future is Not Wind or Solar Power Analysis of Brookings paper by Charles Frank

This paper examines five different low and no-carbon electricity technologies and presents the net benefits of each under a range of assumptions. It estimates the costs per megawatt per year for wind, solar, hydroelectric, nuclear, and gas combined cycle electricity plants. To calculate these estimates, the paper uses a methodology based on avoided emissions and avoided costs, rather than comparing the more prevalent “levelized” costs. Three key findings result:

First—assuming reductions in carbon emissions are valued at $50 per metric ton and the price of natural gas is $16 per million Btu or less—nuclear, hydro, and natural gas combined cycle have far more net benefits than either wind or solar. This is the case because solar and wind facilities suffer from a very high capacity cost per megawatt, very low capacity factors and low reliability, which result in low avoided emissions and low avoided energy cost per dollar invested.

Second, low and no-carbon energy projects are most effective in avoiding emissions if a price for carbon is levied on fossil fuel energy suppliers. In the absence of an appropriate price for carbon, new no-carbon plants will tend to displace low-carbon gas combined cycle plants rather than high-carbon coal plants and achieve only a fraction of the potential reduction in carbon emissions. The price of carbon should be high enough to make production from gas-fired plants preferable to production from coal-fired plants, both in the short term, based on relative short-term energy costs, and the longer term, based on relative energy and capacity costs combined.

Third, direct regulation of carbon dioxide emissions of new and existing coal-fired plants, as proposed by the U.S. Environmental Protection Agency, can have some of the same effects as a carbon price in reducing coal plant emissions both in the short term and in the longer term as old, inefficient coal plants are retired. However, a price levied on carbon dioxide emissions is likely to be a less costly way to achieve a reduction in carbon dioxide emissions.

The Optimal Share of Variable Renewables. How the Variability of Wind and Solar Power Affects Their Welfare-Optimal Deployment

This paper estimates the welfare-optimal market share of wind and solar power, explicitly taking into account their output variability. We present a theoretical valuation framework that consistently accounts for output variability over time, forecast errors, and the location of generators in the power grid, and evaluate the impact of these three factors on the marginal value of electricity from renewables. Then we estimate the optimal share of wind and solar power in Northwestern Europe from a calibrated numerical power market model. The optimal long-term share of wind power of total electricity consumption is estimated to be 20% at cost levels of 50 €/MWh, about three times the current market share of wind; but this estimate is subject to significant parameter uncertainty. Variability significantly impacts results: if winds were constant, the optimal share would be 60%. In addition, the effect of technological change, price shocks, and policies on the optimal share is assessed. We present and explain several surprising findings, including a negative impact of CO2 prices on optimal wind deployment.

 System LCOE/ What are the Costs of Variable Renewables? by Falko Ueckerdt, Lion Hirth, Gunnar Ludere

Levelized costs of electricity (LCOE) are a common metric for comparing power generating technologies. However, there is qualified criticism particularly towards evaluating variable renewables like wind and solar power based on LCOE because it ignores integration costs that occur at the system level. In this paper we propose a new measure System LCOE as the sum of generation and integration costs per unit of VRE. For this purpose we develop a conclusive definition of integration costs. Furthermore we decompose integration costs into different cost components and draw conclusions for integration options like transmission grids and energy storage. System LCOE are quantified from a power system model and a literature review. We find that at moderate wind shares (~20%) integration costs can be in the same range as generation costs of wind power and conventional plants. Integration costs further increase with growing wind shares. We conclude that integration costs can become an economic barrier to deploying VRE at high shares. This implies that an economic evaluation of VRE must not neglect integration costs. A pure LCOE comparison would significantly underestimate the costs of VRE at high shares. System LCOE give a framework of how to consistently account for integration costs and thus guide policy makers and system planers in designing a cost-efficient power system.

Wade Allison: Why radiation is much safer than you think

Originally man relied for energy on the digestion of food like all animals, but at a historic moment he began to domesticate fire as a source of external energy for lighting, cooking and heating his home. Although this was a dangerous step, it was essential to civilisation. No doubt the environmentalists of those days objected and had a strong case, but they had to accept that the benefits outweighed the dangers, provided education and training in the use of fire was given to everybody including children.

Recently retired Oxford physicist Wade Allison continues helping people understand that radiation risks are radically less than the usual media alarmism. Prof. Allison used this cartoon in his recent video interview, to illustrate the political situation when humans first began to burn fuel outside of their bodies.

Here’s a sample of his science communications:

Nuclear Has Scaled Far More Rapidly Than Renewables – The Clean Energy Transition Needs the Atom


Anyone interested in rapidly increasing the production of clean energy should look to nuclear. The most ambitious renewables plan — Germany’s Energiewende — has brought far less zero-carbon energy far less quickly than similar efforts focused on nuclear. Being cool, profitable and popular is fine, but irrelevant. We need a reliable technology that delivers deep energy emission cuts and we need it fast. — Geoff Russell

Please bookmark Geoff Russell’s essay on The Breakthrough. In a very few words Geoff makes it completely clear that nuclear is an essential part of any sane strategy for slashing carbon emissions.  The anti-nuclear activists are the problem.

How do the rollout speeds of renewables and nuclear power compare?

Let’s compare the speed of per capita electricity generation growth in a few countries for renewables and nuclear. I’m guessing nobody will object if we use the German wunderkind as a top performing renewables example. We’ll plot the last 11 years of wind and solar growth, starting 12 months after the beginning of their feed-in-tariff scheme. We’ll also throw in the last 11 years of Chinese per capita electricity growth from all sources. This is just to put their coal/wind/nuclear/solar/hydro build in proper per capita context.

All of our comparison cases, except one, are historical. They aren’t plans, they are achievements. Anti-nuclear campaigners are fond of finding particular nuclear power stations with time or cost overruns to ‘prove’ how slow or expensive nuclear electricity is to roll out. Cherry picking examples is a time-honored strategy when objective argument fails.

(…snip…)

Being cool, profitable, and popular is fine, but irrelevant. We need a reliable technology that delivers deep energy emission cuts and we need it fast.

It’s rapidly becoming crystal clear that the biggest enemy we face in preventing ongoing climate destabilistation is the anti-nuclear movement. They have cost the planet two decades which could otherwise have seen many more countries with clean electricity, and now they are running a distracting strategy promoting technologies which are intrinsically slow to roll out. They have, in effect, created an energy growth vacuum being filled by coal seam gas which is quick to build but which won’t prevent further climate destabilisation.

Germany renewables vs. demand

Cyril R. sums up German energy policy in a three sentence comment on John Morgan’s wonderful Catch-22 of Energy Storage:

Capacity factor of solar PV in Germany is 10%. Wind in Germany is around 16%.

Electricity demand in Germany peaks in winter, when the capacity factor of solar ranges from 0% to 3%.

These energy sources aren’t there most of the time, and certainly not when they’re needed most which is in the evening and winter.

UCB’s Per Peterson on China’s advanced nuclear program

In this essential Breakthrough interview Per Peterson summarizes China’s advanced nuclear development – including the US – China collaboration. I think this collaboration is the one global effort that could have a material impact on climate change. US support for the cooperation seems to be hidden from the usual political shout-fest — at least if there is anyone in the executive who is taking credit for even allowing the cooperation I’ve not heard of it. Imagine what could be accomplished if there was enthusiastic, high-level backing and 10x as much funding? This is just a fragment of the interview focused on China:

What are China’s plans for advanced molten salt nuclear reactors?

China has a huge nuclear program and is building almost every kind of reactor possible, including a number of experimental advanced reactors. Two years ago the Chinese Academy of Sciences decided to pursue a thorium liquid-fueled molten salt reactor, but first decided to build an intermediate reactor that uses a solid fuel with salt as coolant. (The choice to build a solid fuel reactor reduces the licensing risk without heavily compromising performance.) In 2015, China will be starting the construction of the 10 MW solid-fueled thorium molten salt test reactor. By 2017 they hope to have this reactor operating. And by 2022, they hope to have commissioned a 100 MW thorium molten salt commercial prototype reactor. Alongside this effort, the Chinese will be developing a 2 MW liquid-fueled reactor that will enter the final stages of testing in 2017.

Are you collaborating with the Chinese on this effort?

There is an ongoing formal collaboration between the Chinese Academy of Sciences (CAS) and the US Department of Energy (DOE). The DOE has a memorandum of understanding with the CAS. Under this formal umbrella, our research group has an informal relationship with the Shanghai Institute of Physics. There is also a cooperative research agreement being developed between China and Oak Ridge National Laboratory in Tennessee, which would provide funding for China’s thorium molten salt research effort.

Tell us more about US involvement in the Chinese effort to commercialize advanced nuclear technologies.

The US DOE has been reviewing the Chinese effort to build a molten salt reactor. The Chinese program has been using US expertise in reactor safety, and US experts have reviewed the early test reactor design and remain engaged. So far, China’s nuclear regulatory policy has been to adopt and follow the safety and licensing regulation of the exporting country. Russian-built reactors in China are have adopted a regulatory approach similar to that of Russia. Likewise, licensing for the Westinghouse AP1000s that are being built in China is following a US approach. There appears to be an emerging, consensus approach in the US and in China for safety for molten salt reactors as well.

How should the US participate in the commercialization of these reactors?

My view is that the United States needs to maintain the capability to independently develop advanced nuclear designs that are being studied and will be commercialized in China. Maintaining such capability could encourage US-China joint ventures, which could accelerate development and thus ensure that commercial designs are deployed at large scale as soon as possible. The United States has a lot of expertise in the areas of nuclear safety and licensing, and could bring such expertise to US-China partnerships. If new advanced nuclear designs are simultaneously licensed in both the US and China, the possibility for large-scale deployment increases.

Do you think such reverse engineering is possible? Isn’t China keeping their plans secret?

The Chinese Academy of Sciences has been remarkably open and transparent in their effort to build their thorium molten salt reactor. They’ve been doing a lot of international collaboration. All of the reports are published in an extraordinary level of detail. This collaboration is really important if we want to see this technology developed and deployed soon enough to make a real difference in helping reduce climate change. If China can stay on track to commission a 100 MW commercial scale reactor by 2022, it would be fantastic if this reactor could include substantial contribution by US industry as well. This kind of collaboration could lead to a joint venture effort that could result in more rapid and larger near-term deployment.

The April 2014 Breakthrough interview is a very concise and up to date informed perspective on the current status and the future of nuclear power: UC Berkeley’s Per Peterson Pursues Radical New Design with Off-the-Shelf Technologies. Please help everyone you know to read and understand.

 

Very high background radiation areas of Ramsar, Iran: preliminary biological studies

Jim Conca cited this abstract in PubMed

People in some areas of Ramsar, a city in northern Iran, receive an annual radiation absorbed dose from background radiation that is up to 260 mSv y(-1), substantially higher than the 20 mSv y(-1) that is permitted for radiation workers. Inhabitants of Ramsar have lived for many generations in these high background areas. Cytogenetic studies show no significant differences between people in the high background compared to people in normal background areas. An in vitro challenge dose of 1.5 Gy of gamma rays was administered to the lymphocytes, which showed significantly reduced frequency for chromosome aberrations of people living in high background compared to those in normal background areas in and near Ramsar. Specifically, inhabitants of high background radiation areas had about 56% the average number of induced chromosomal abnormalities of normal background radiation area inhabitants following this exposure. This suggests that adaptive response might be induced by chronic exposure to natural background radiation as opposed to acute exposure to higher (tens of mGy) levels of radiation in the laboratory. There were no differences in laboratory tests of the immune systems, and no noted differences in hematological alterations between these two groups of people.

I found an ungated version of the paper here. Study participants were 14 normal and 21 elevated background persons.

PWC: Heading for 4°C, pledging for 3°C, talking about 2°C


Globally we are out of time – now need to increase decarbonization rate by factor of five. From PWC: Low Carbon Economy Index 2014 | 2 degrees of separation: ambition and reality

The PWC 6th annual Low Carbon Economy Index 2014 (LCEI) tracks the rate that G20 countries are decarbonizing their economies. Globally we are achieving only 1% pa vs. the 6.2% pa we need to meet the 50% chance of 2°C or less. PWC has published an important contribution, very well-explained and illustrated. If you are in a big hurry, then at least look at the 2.7 minute video (with transcript).