Uber Might Be More Valuable Than Facebook Someday. Here’s Why

Über iPhone app

This is pure speculation – but it is an exciting spec. Not all of this will happen, but possibly other big opportunities will emerge. This is just a sample:

So, step one: Take over taxi industry. Step two: Kill ownership. From there, who knows what could happen in the long term? Uber could start using self-driving cars made by Google (one of its investors) to eliminate the need for human drivers, driving down its costs even more. It could introduce a near-instantaneous delivery service to rival Amazon’s drones. It could roll out a subscription service, akin to Amazon Prime, that would include perks like predictive transportation, so that, for example, when Uber sees an appointment on your Google calendar for a cross-town meeting, it sends a car to your office automatically at the right time. There’s no reason that other companies couldn’t try to do these things, too. But Uber has first-mover advantage, and it’s got most of the kinks – customer interface, payment, fleet management, supply-and-demand considerations – worked out already, making it a prime candidate to beat competitors to new product areas.

The result of Uber’s efforts, in other words, could be the creation of a techno-metropolis, in which people and goods are ferreted around seamlessly and, perhaps, automatically. It would be like something out of a sci-fi movie. And Uber would be standing at the center of it all, collecting a cut of every transaction.


Innovation, Disruption, and Progress: What Do Vaccines, Software, and Shipping Containers Have in Common?

You never know where the next shipping container will come from.

This August 9 Bill Gates dispatch on the multi-modal shipping revolution is a must read, which begins with this:

In the second half of the twentieth century, an innovation came along that would transform the way the world did business. At first, some people wrote it off as a fad. Others kept at it, convinced that it was going to have a huge impact. Some of the companies that made big bets on this tool were very successful, while others ended up going under. Ultimately, it helped accelerate the globalization that had already been under way for centuries.

I’m not talking about software. I’m talking about the shipping industry, and in particular an innovation you might not have thought much about: the shipping container. It is the subject of an excellent book I read this summer called The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger, by a former Economist editor named Marc Levinson. The Box is mostly about globalization, but there is also a larger story here that touches on business and philanthropy more broadly.

For centuries, cargo ships were loaded and unloaded by hand, one crate at a time. Each crate might have a different destination, which made the whole process slow and expensive. In 1956, a trucking magnate named Malcolm McLean had a clever idea: Instead of unloading a trailer’s worth of crates onto a ship, why not put the whole trailer on the ship?

It was the beginning of a revolution in the way goods move around the world. Shipping lines ordered bigger and bigger ships to accommodate the aluminum boxes that soon became the standard container. Port cities from New York to Singapore raced to modernize their facilities to accommodate the larger ships.

Do read Bill's complete review, then read The Box!


Traffic safety via distributed intelligence and V2V

A simple idea showing how much can be done with basic Vehicle-to-vehicle (V2V) communication and a bit of local intelligence.

When a driver hits the brakes, the cars following behind may not see the telltale red lights if driving around a bend or caught up in foggy weather conditions. The Ford Motor Company hopes to make the roads safer with a warning system that transmits a ‘brake light’ alert to the dashboards of cars following behind.

The ‘Electronic Brake Light’ proved it could allow drivers to brake earlier and avoid collisions—or at least reduce the severity of accidents—during a four-year research project concluded in Dec. 2012. Such technology represented just one of 20 possible car systems tested by Ford and presented as part of the Safe Intelligent Mobility—Testfield Germany (simTD) project, according to a press release on June 20.

(…snip…)The smart car technology shows the advantages of having networked cars ‘talking’ to one another on the roads, even if self-driving autonomous cars have not yet become widely available. Smarter cars may even communicate with traffic control systems to reduce or eliminate problems such as traffic congestion.

Kimball Livingston: sailing aboard USCGC Eagle

Recently Kimball posted a moving and fascinating personal log of sailing aboard the US Coast Guard 295-ft sail training ship EAGLE. 

(…) Throughout our three-day passage from Portland to the Golden Gate, the ship received visits from service helicopters and cutters, all eyes out to see the Eagle. Their Eagle. I began to get it. What’s hard to put into words. Eagle is magic.

On our last day out the wind piped up and the old girl was hauling the mail . . .

EagleLookingForward © Kimball Livingston

We greatly enjoy Kimball’s writing. This piece is a wonderful example, which Kimball has annotated with a number of his original photos. 

(…) Through the Coast Guard Foundation, I met remarkable people. One of them was Lieutenant Commander (soon to be promoted) Alda Seabrands. She was called in for the shouting at a Foundation fundraiser.

Alda had been flying a pollution patrol over Puget Sound (meaning, no rescue jumper), when her helicopter was diverted to SAR. A fishing skiff had capsized, spilling two people into white water. The chopper made the scene quickly, dropped a basket, and one man climbed in. He was hauled aboard and the basket lowered again. The second man put one arm over the edge of the basket, then rolled unconscious. Alda told her copilot, “It’s all yours, Binky.”

And jumped.

OK, she didn’t exactly say that, and I’m sure the events, however dire and hurried, were more complicated. But Alda Seabrands was flying as Pilot In Command when she, in full awareness, left her post. As a certain Admiral put it to me, “We had to decide whether it was a court-martial or a medal. We decided it was a medal.”

 Just don’t miss it – get on over there.

Zero emission synfuel from seawater

Click the image for John Morgan’s full size Table 1

Physical chemist and entrepreneur John Morgan wrote a fascinating post for Brave New Climate in January. The possibilities of the US Navy and Palo Alto Research Center (PARC) research underscore the importance of innovation to deliver energy and especially transport fuel solutions that are workable (i.e., solutions that are compatible with Roger Pielke’s Iron Law).

The seawater CO2 extraction is a big win if the costs hold at scale, because the costs look to be MUCH lower than direct air capture. If the huge energy inputs required are supplied by nuclear (especially if the nuclear supply includes 800C process heat via high temperature gas reactor), then the synfuel is long-term carbon neutral. Innovation in direct air capture is still extremely important because it is clear that the planet will greatly exceed current carbon goals before it becomes truly zero carbon. 

Two papers published last year described a new approach to zero emissions synfuel, looking at direct carbon dioxide extraction from seawater.  The new insight in these papers is that CO2 is very soluble in seawater, where the concentration is about 140 times higher than in the atmosphere. This could make seawater extraction a lot cheaper than direct air capture.

 Please read John’s entire post – it is well-sourced and well-written, and I believe accurate.

Robocar Oriented Development and the New City

Brad Templeton has done more work on the implications and impacts of robocars/self-driving cars than anyone I know. There are dozens of thoughtful essays on his site, and he is now a consultant to Google’s self-driving car team (can’t talk about that of course – too bad). This longish essay speculates on the impacts of robocars on patterns of city development. 

This essay examines the potential future big changes to cities as a result of robocars. Most of these changes will be inspired by one key element of robocars: because they can drop passengers off, and then go do other work or park themselves densely in more remote lots, the need for large amounts of parking surrounding commercial buildings should diminish greatly, particularly in suburbs and non-central urban areas. If the land devoted to parking can be repurposed, what does that mean for the city?

See Brad’s main robocar page: Where Robot Cars (Robocars) Can Really Take Us. I learn something every time I visit.

NASA: “Hybrid Wing” Uses Half the Fuel of a Standard Airplane

NASA has been researching Blended Wing Body (BWB) aircraft, building a series of larger and larger remote controlled experimental planes. NASA has recently announced a carbon-composite based manufacturing process that they think will enable production of sufficiently strong structures for commercial use.

 Wikipedia on BWB: aircraft have a flattened and airfoil shaped body, which produces most of the lift, the wings contributing the balance. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. By way of contrast, flying wing designs are defined as a tailless fixed-wing aircraft which has no definite fuselage, with most of the crew, payload and equipment being housed inside the main wing structure.

A blended wing body has lift-to-drag ratio 50% greater than a conventional airplane. Thus BWB incorporates design features from both a futuristic fuselage and flying wing design. (…) 

I’ve not yet found any drawings of the proposed composite construction – but Kevin Bullis at MIT Technology Review has this:

The second challenge is building a full-scale version of the aircraft with pressurized cabins that is structurally sound. One reason tubular airplanes have persisted is that it’s relatively easy to build a tube that can withstand the forces acting on it from the outside during flight while maintaining cabin pressure. The hybrid wing design involves a flatter, box-like fuselage that blends with the wings. The flatter structure, which includes some near-right angles, is much more difficult to build in a way that’s strong enough and light enough to be practical.

NASA’s manufacturing process starts with preformed carbon composite rods. The rods are covered with carbon fiber fabric and stitched into place. Fabric is then stitched over foam strips to create cross members. The fabric is impregnated with an epoxy to create a rigid composite structure.

Sections of a fuselage built with the technique were tested and shown to withstand up to the forces that would be applied to a finished aircraft. Tests also showed that when enough pressure was applied to cause the parts to fail, the stitching used to make the structure stopped cracks from spreading—a key to avoiding catastrophic failure in flight.

Dave Winer: the case for a desktop SMS app – to send/receive texts to mobiles

I sure agree with Dave Winer: Thread: A smartphone narrative and an idea for a product. Following is an excerpt of his proposal:

(…)  Now finally I’m able to explain the idea.

A picture named jenInNy.jpgWhen I tried to send text messages from my desktop Mac, all of a sudden I was dropped into a horribly complex maze of things that make no sense. I can’t even figure out how to send an SMS without someone sending me one first. I tried reading all of Google’s docs, installed all the software they told me to install, and in the end I went back to the Nexus 4 to communicate with Jen. Later I realized I could do what I needed to with the Voice website. But there were problems there too. I ended up having to enter the number manually, my contacts list was useless in that context.

The idea is this — Google or Microsoft or Apple — create a new app that runs on the desktop that’s designed with the parameters of a smartphone. Leverage the skills I already have. I was able to set up the Windows Phone in a few minutes, on an OS that I had never used. I am a relatively expert Mac user, but failed after a half hour. The lesson is pretty clear. At the very least the desktop has to do what the mobile device does, with the same care of design and simplicity. What I’m left with is a hodgepodge of stuff that wasn’t designed to do this. Time for a fresh look.

We are often frustrated by the same issue. Our solution is the web-based international service ipipi.com at the reasonable cost of $ 0.10 per message.

Kent Larson: Responsive Cities

Architect Kent Larson is the director of Changing Places at the MIT Media Lab. Larson, postdocs and students are innovating a large number of ideas of how the urban future can be happier, less stressful, wealthier and low-carbon. Some of these concepts like the City Car, or self-driving cars, we’ve written about before.

At TEDx Boston 2012 Kent gave an 18 minute presentation. I’m confident you’ll be thinking of more ideas that will  contribute to better city life for the hundreds of millions of rural people who will be migrating to cities over the next two decades (300+ million in China alone).