Greenpeace Golden Rice stance baffling

The introductory paragraphs of an op-ed by Patrick Moore, the former head of Greenpeace:

It was 43 years ago when I boarded an old fishing boat named the Phyllis Cormack in Vancouver on the first Greenpeace campaign to stop nuclear testing in Alaska. 

I never dreamed that 43 years later, Greenpeace would be arriving in Vancouver on a $32 million ship, and that this time I would be going down to protest against them.

I’m still proud of the work Green-peace did during the 15 years I was in the leadership. I left because it had drifted from a humanitarian effort to save civilization from all-out nuclear war to an organization that sees humans as the enemies of the Earth. How else could it justify its opposition to Golden Rice?

Two humanitarian scientists, Ingo Potrykus and Peter Beyer, used their knowledge of genetics to create Golden Rice, a variety of rice that contains beta carotene, the essential nutrient that we make into vitamin A. 

They were aware that two million people, mostly young children, die each year from vitamin A deficiency. Most of them live in urban slums in Asia and Africa and eat little more than a cup of rice each day. 

Conventional rice contains no beta carotene, resulting in 250 million preschool children who have chronic vitamin A deficiency. Vitamin A is necessary for eyesight and the immune system. As many as 500,000 children go blind each year, half of whom die within a year of becoming blind, according to the World Health Organization.

Greenpeace has made a concerted effort to block Golden Rice’s introduction since it was announced in 2000. 

The organization has waged a campaign of misinformation, trashed the scientists who are working to bring Golden Rice to the people who need it and supported the violent destruction of Golden Rice field trials at the International Rice Research Institute in the Philippines.

How does Greenpeace justify this heartless behavior? 


The likely answer to Moore’s question is “Because we can raise more money by opposing than supporting GMO”. The Greenpeace advocacy will reverse when the leadership calculates there is more Greenpeace $$ and growth by supporting GMO (and nuclear, etc.)

Eleven top scientists: Standing Up for GMOs

On 8 August 2013, vandals destroyed a Philippine “Golden Rice” field trial. Officials and staff of the Philippine Department of Agriculture that conduct rice tests for the International Rice Research Institute (IRRI) and the Philippine Rice Research Institute (PhilRice) had gathered for a peaceful dialogue. They were taken by surprise when protesters invaded the compound, overwhelmed police and village security, and trampled the rice. Billed as an uprising of farmers, the destruction was actually carried out by protesters trucked in overnight in a dozen jeepneys.

The global scientific community has condemned the wanton destruction of these field trials, gathering thousands of supporting signatures in a matter of days.* If ever there was a clear-cut cause for outrage, it is the concerted campaign by Greenpeace and other nongovernmental organizations, as well as by individuals, against Golden Rice.


The eleven signatories to this AAAS Science bulletin are at the top of every relevant field and academy: 

Bruce Alberts is President Emeritus of the U.S. National Academy of Sciences and former Editor-in-Chief of Science.

Roger Beachy is a Wolf Prize laureate; President Emeritus of the Donald Danforth Plant Science Center, St. Louis, MO, USA; and former director of the U.S. National Institute of Food and Agriculture.

David Baulcombe is a Wolf Prize laureate and Royal Society Professor in the Department of Plant Sciences of the University of Cambridge, Cambridge, UK. He receives research funding from Syngenta and is a consultant for Syngenta.

Gunter Blobel is a Nobel laureate and the John D. Rockefeller Jr. Professor at the Rockefeller University, New York, NY, USA.

Swapan Datta is Deputy Director General (Crop Science) of the Indian Council of Agricultural Research, New Delhi, India; the Rash Behari Ghosh Chair Professor at Calcutta University, India; and a former scientist at ETH-Zurich, Switzerland, and at IRRI, Philippines.

Nina Fedoroff is a National Medal of Science laureate; a Distinguished Professor at the King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; an Evan Pugh Professor at Pennylvania State University, University Park, PA, USA; and former President of AAAS.

Donald Kennedy is President Emeritus of Stanford University, Stanford, CA, USA, and former Editor-in-Chief of Science.

Gurdev S. Khush is a World Food Prize laureate, Japan Prize laureate, and former scientist at IRRI, Los Baños, Philippines.

Jim Peacock is a former Chief Scientist of Australia and former Chief of the Division of Plant Industry at the Commonwealth Scientific and Industrial Research Organization, Canberra, Australia.

Martin Rees is President Emeritus of the Royal Society, Fellow of Trinity College, and Emeritus Professor of Cosmology and Astrophysics at the University of Cambridge, Cambridge, UK.

Phillip Sharp is a Nobel laureate; an Institute Professor at the Massachusetts Institute of Technology, Cambridge, MA, USA; and President of AAAS.

Possibly they have just a bit more standing than Greenpeace, Friends of the Earth, et al?

Are GMOs Safe? Global Independent Science Organizations Weigh In


Jon Entine at  the Genetic Literacy Project has released a very useful infographic on crop biotechnology safety. This is a summary of the unambiguous safety approvals of every national scientific academy on the planet.

This is the second inforgraphic from GLP. The first is also very useful, 10 reasons we need crop biotechnology


Mark Lynas: Using the tools of biotechnology to advance Borlaug’s legacy

Don’t miss the recent keynote speech by Mark Lynas to the Borlaug Global Rust Initiative 2013 Technical Workshop, New Delhi. Norman Borlaug would be proud. Excerpts:

We are gathered here today, under the aegis of an international collaboration that bears his name, to continue Borlaug’s lifelong battle with wheat rust. Rust wiped out his family farm’s wheat when he was a boy, and rust was the reason Borlaug initially established the research station in Sonora.

As we all know, he and his colleagues succeeded eventually in defeating wheat stem rust for many decades, until the emergence of the resistant race Ug99 at the very end of the last century.

Although the progress of Ug99 has not been as dramatic as initially feared, susceptible wheat is still being grown all over the world, and forms a mainstay of humanity’s food supply today. A fifth of all our calories come from wheat, and the global harvest is nearly 700 million tonnes per year.

While European wheat growers keep stem rust at bay with liberal applications of fungicide, this is neither ecologically sustainable nor financially desirable over the longer term.

In south and east Asia, meanwhile, both of which produce more wheat than the whole of North America, most growers cannot afford or do not have access to fungicides.

Billions of people therefore depend on susceptible wheat varieties that are sitting ducks, waiting for an epidemic of Ug99 to be blown over on the winds from the Middle East and Africa.

I was given the mandate to talk today about ‘Using the tools of biotechnology to advance Borlaug’s legacy’, and I cannot imagine a more appropriate area where this applies than the question of tackling wheat stem rust.

Borlaug was an unusual revolutionary in that he didn’t want his revolution to stop with him. He was a lifelong advocate of innovation – and a staunch supporter of biotechnology as the promising new frontier for plant breeding.

You can see why. By today’s standards, Borlaug had to work blind, using guesswork, chance and a lengthy process of elimination with thousands upon thousands of wheat crosses to try to get just the right genetic combination.

I cannot imagine a better embodiment of Norman Borlaug’s philosophy than this successful joint effort.


But unfortunately the progress of good science runs up against the hard rock of bad politics. As perhaps the world’s most political food crop, by virtue of its very nature in supplying our daily bread, wheat has so far been locked out of the biotechnology revolution.

Although many new wheats have been developed using recombinant DNA and even tested in field trials, not a single one has ever been made available to farmers – not because there was anything wrong with the new varieties, but solely because of the worldwide cloud of fear and superstition that surrounds the use of genetic engineering.

Thus, the most powerful tools offered by modern molecular biotechnology must seemingly be permanently discarded – not because of any rational assessment of risks and benefits – but because a tide of anti-science activism has drowned scientists and governments around the whole world in a tsunami of lies.

The Myth and Reality of Terminator Seeds

Farmers have historically been glad to buy seeds from seed companies. Seed companies specialize in making seeds, not making food. Farmers specialize in growing food, not seeds. Seed companies can grow plants/seeds to maturity, harvest at the right time, process and store the seed, then perform quality control to guarantee the best product for the farmer.

University of Florida plant scientist Kevin Folta recently posted a very concise puncturing of a favorite myth of the anti-GMO activists: 

The topic of ‘suicide seeds’ or ‘terminator technology’ is a deeply engrained in the fabric of the anti-GMO movement.Suchominouslanguage is the basis of many websites thatconjure fear spanning from farmer manipulation to the death of every plant on the planet. That would be one heck of a frankenfood!

 Sticking a loaded gun in the ear is a sure way to develop vivid misinformation.

However, the reality is not nearly so scary. In 1998 Delta and Pine Land, one of America’s largest cotton seed company, recieved wide patent protection for a series of traits, one that was called’technology protection system’. Through a ratherclever process a self-fertilizing plant cannot produce germinating seeds. The molecular basis is a gene that encodes a protein called a Ribosome Interferring Protein. You might recall that ribosomes are the cellular sites for protein synthesis, so ifthis interferring protein is expressed, the plant can’t make otherproteins (which comprise enzymes and structural feature) so the plant would die before germination.

The gene was placednext to a promoterfrom an LEA gene. Think of promoters as on-off switches. LEA stands for ‘Late Embryogenesis Abundant’. So this promoter switcheson the protein that interrupts protein synthesis during late embroygenesis. Anembryo that can’t synthesize protein is pretty much DOA.

All of this was regulated through a clever but complex process that activated this mechanism upon self-pollination. If you’d like to know more send me an email. I could go into detail here, but a picture is worth 1000 words. Probably more.

Why do they callit ‘terminator technology’? This term actuallywas devised from a Canadia NGO called theRural AdvancementFoundation International. They were not so excited about the technology.

But to your point, how does this technology help farmers? It doesn’t. It doesn’t hurt them either.Why? Because it was never used in a crop beyond the greenhouse. The technology was never commercially deployed. Why not? Probably because itbecame a PR nightmare coupled tothe fact that Delta Pine’s products had a long, expensive road to deregulation ahead.


There is much more detail at Kevin’s blog.

A Race to Save the Orange by Altering Its DNA

Here is an unusually well-researched NYT article on the efforts to control citrus greening. The obvious solution is to apply modern plant genetics to develop a commercial orange that is resistant to the bacterium. Southern Gardens Citrus has been funding five labs that are making excellent progress on GM solutions. But the delays in the tortuous regulatory jungle may have less financial impact on growers than the unfounded fears that have been spread by anti-GMO activists. Could the Greenpeace campaign against modern agriculture end up destroying the Florida orange industry?

The call Ricke Kress and every other citrus grower in Florida dreaded came while he was driving.

“It’s here” was all his grove manager needed to say to force him over to the side of the road.

The disease that sours oranges and leaves them half green, already ravaging citrus crops across the world, had reached the state’s storied groves. Mr. Kress, the president of Southern Gardens Citrus, in charge of two and a half million orange trees and a factory that squeezes juice for Tropicana and Florida’s Natural, sat in silence for several long moments.

“O.K.,” he said finally on that fall day in 2005, “let’s make a plan.”

In the years that followed, he and the 8,000 other Florida growers who supply most of the nation’s orange juice poured everything they had into fighting the disease they call citrus greening.

To slow the spread of the bacterium that causes the scourge, they chopped down hundreds of thousands of infected trees and sprayed an expanding array of pesticides on the winged insect that carries it. But the contagion could not be contained.


In his office is a list of groups to contact when the first G.M.O. fruit in Florida are ready to pick: environmental organizations, consumer advocates and others. Exactly what he would say when he finally contacted them, he did not know. Whether anyone would drink the juice from his genetically modified oranges, he did not know.

But he had decided to move ahead.

Late this summer he will plant several hundred more young trees with the spinach gene, in a new greenhouse. In two years, if he wins regulatory approval, they will be ready to go into the ground. The trees could be the first to produce juice for sale in five years or so.

Whether it is his transgenic tree, or someone else’s, he believed, Florida growers will soon have trees that could produce juice without fear of its being sour, or in short supply.


GM cotton protects insect predators

Editor's summary

Transgenic crops producing insecticidal proteins derived from Bacillus thuringiensis (Bt) have proved effective in controlling bollworm and reducing the need for pesticides in cotton crops in China. This study of Bt crop performance at sites across northern China identifies a decrease in aphid pests and a marked increase in the numbers of ladybirds, lacewings and spiders — natural enemies of insect pests — compared with conventional crops. There is also evidence that these predators thrive in neighbouring non-transgenic maize, soyabean and peanut crops. These results suggest that Bt cotton can promote biological control in agricultural ecosystems by decreasing insecticide use and increasing predator populations.

LSE Enters the GMO Discussion

Very interesting! Cami Ryan linked to this Agri-Pulse bulletin on the new report entitled “Feeding the Planet in a Warming World.” I just downloaded the report:

© Copyright Agri-Pulse Communications, Inc.

The prestigious London School of Economics (LSE) and the Information Technology and Innovation Foundation and have entered the GMO discussion with a new report entitled “Feeding the Planet in a Warming World.” With the 39th G-8 summit to be held in Northern Ireland June 17-18, the LSE report is quite timely and significant. The agenda for the upcoming meeting established by Prime Minister David Cameron will continue the discussion of global food security started by President Obama last year at Camp David.

The LSE report offers insight and possible solutions to mitigating the rapidly growing challenge of global food security. Therefore, allow me to quote from the Executive Summary at some length:

“Even in the most ideal circumstances, diffusing existing agricultural technologies and practices is not enough to address the challenges we will face in the coming decades. In light of this, we propose several solutions. In particular, we argue that the critical, game changing solutions for building global agricultural resilience will come only from expanding the innovation and adoption of next-generation crops and agricultural practices. We need new and improved crop varieties that use less water, deliver increased yields and improved nutrition, and have built-in means for repelling insect pests, resisting disease, and withstanding extreme heat, cold, rain and drought. Agriculture will need every existing tool in the box, as well as the development of new ones, including the use of demonstrably safe crops improved through modern biotechnology, commonly referred to as genetically modified organisms (GMOs) or transgenics…

Governments worldwide should reform GMO regulations. There is no agricultural policy change that could be adopted with more positive impacts and fewer downsides than drastically reducing regulations applied to crops improved through biotechnology. Foods derived from crops or animals improved through biotechnology have been subjected to more extensive scrutiny than any other agricultural product in human history. Humans and livestock have consumed billions upon billions of meals derived wholly or in part from these improved agricultural varieties for nearly two decades, which have sustained a strong record of safety for humans and the environment. Yet these innovative products, which are developed and brought to market with precise, predictable and safe techniques, are subjected to regulatory obstacles that dwarf those faced by older products and obsolete technologies, some with genuinely problematic legacies.”



Survey of Pest resistance to Bt crops

Jonas Kathage has posted a very approachable survey of Bt resistance issues and strategies at Biology Fortified, Inc. Jonas closes with the following discussion of both economics and resistance management strategies:

Meanwhile, entomologists are working on improving their incomplete understanding the complex mechanisms involved in resistance evolution. Recently published research suggests that pyramiding might not work as well in delaying resistance as previously thought. In the laboratory, scientists selected cotton bollworm (Helicoverpa zea) for resistance against Cry1Ac. They exposed the resistant insects and a susceptible control group to Bt cotton expressing Cry1Ac/Cry2Ab and found that the group resistant to Cry1Ac exhibited a much higher survival rate than the control group, violating the assumption of redundant killing that is crucial to this strategy. So far, despite multiple reported instances of resistant insects, large-scale failure of Bt crops due to evolved resistance has not occurred, but it may come sooner than expected.

Should refuge requirements be expanded?

This research finding is bad news because the potential of pyramided Bt crops might be lower than believed. (Actually, some scientists have been positively surprised at the long delays observed in resistance development.) Let’s assume the results also apply to other Bt pyramids and insect species (there is evidence to the contrary). What should be made of such a scenario? Should larger refuge areas be required?

Before answering that question, it must be recognized that the sustainable application of a particular technology is not a primary goal of farming. A much more important goal is efficiency. Efficiency means getting the most output (e.g. food) from a set of scarce inputs (natural resources, labor, capital). The technologies transforming inputs into outputs, be they biological, chemical, or mechanical, are valuable only insofar as they contribute towards efficiency.

When deciding whether to expand refuge requirements, policymakers must take into account that there is a tradeoff between the size of the refuge area and productivity. If refuge area increases, more plants will get damaged by pests and hence reduce effective yield. The crucial question is whether the benefits of delaying resistance outweigh the costs of these yield losses and other potential drawbacks of refuges such as the need for additional land, sprays, separation costs, and sowing and harvest times. Costs of monitoring compliance with refuge requirements must also be considered, while pyramiding will incur more R&D expenditures. (In some developing countries with larger monitoring costs, refuge requirements may be less efficient also because of natural refuge in small-scale cropping systems.) The point here is not to question whether the optimal refuge requirement is 0%, 20% or 40%, but to realize that there are costs that have to be weighed against benefits. It is possible that an arms race based on adding more Bt genes is more efficient than slowing resistance development by expanding mandated refuges.

Besides Bt crops, there is a host of other pest management options including chemical control, biological control and cultural control such as ploughing and crop rotation. Like Bt, they all have their particular drawbacks, be it risk of resistance development, low effectiveness, or environmental and economic cost. The most efficient pest management strategy depends on local context, but will involve multiple instruments. For breeders, genes producing insect toxins, whether introduced using conventional or GM techniques, are not the only route towards pest protection. There are exciting possibilities on the horizon, including transgenic plants that emit volatile organic compounds to repel herbivores or attract their natural enemies. The use of nano-silica that kill pests by purely physical means are just one example of potential applications of nanotechnology in pest management. New approaches will have benefits and costs to be assessed against existing alternatives. As of today, there are no magic bullets protecting crops from pests. But there are excellent reasons that we should keep looking for them. Bt will not be the end of the road.

Continue reading from the top…