Tag Archives: Nuclear

Enviros and climate scientists continue their fight over nuclear power

It didn’t take long for the Bootleggers to organize a roomful of Baptists to respond to the open letter from four climate scientists Caldeira, Emanuel, Hansen and Wigley. The response was signed by 300 of the usual crowd including Greenpeace USA and the Environmental Working Group. John Upton at Grist asked the climate scientists for a response. Ken Caldeira replied with this very civil email:

It is time for people to rethink their positions on nuclear power, and make arguments based on facts rather than prejudices.

Any good scientist and any good citizen should be constantly re-examining their positions, so the basic call for us to rethink our position on nuclear power is most welcome. I hope that the signers of this Civil Society Institute letter can bring themselves to re-examine the nuclear power issue with the same objectivity and lack-of-bias that they seek from us.

The letter confusedly suggests that I “embrace nuclear power”, and implies that I somehow discount the importance and potential of solar, wind, and efficiency. I cannot speak on behalf of my colleagues, but at least in my case, these claims are far from the truth.

We embrace things that we love. I don’t love nuclear power. Nuclear power has brought us Chernobyl and Fukushima. If the current industry were scaled up enough to solve the climate problem, there would be one such accident each year — and that is clearly unacceptable. Were I king of the world, I would decree that solar, wind, and efficiency would be the primary means we deploy to solve the climate problem.

But there is no energy storage system that works at the scale of the modern megalopolis. We need a way to power civilization when the sun is not shining and when the wind is not blowing. In a modern real economy, not ruled by benevolent kings, reliable power is required at competitive prices. There are very few technologies that can provide this reliable baseload power. Fossil fuels and nuclear power are the two leading candidates. I think an objective assessment of the facts shows that fossil fuels are far more dangerous than even today’s nuclear power.

But I do not defend today’s nuclear power industry. Even though most nuclear power plants have an excellent safety record, there are an important few that do not. There is no justification for the claim that this important type of electricity generation can never be made sufficiently safe and inexpensive.

To say that an entire category of technology can never be sufficiently improved is, I think, to adopt a position of technological myopia, where one lacks to the capacity to imagine that future technologies can differ substantially from today’s technologies.

I do not embrace nuclear power. There is no power source that one wants to embrace. They all have negative consequences. I do not want a solar PV factory, a massive wind turbine, or a nuclear power plant in my back yard. But I want the juice. The question is not about what power source I embrace, but about what power source I might think myself capable of not rejecting. Many people want to reject power sources, but want the juice that comes from those power sources.

In summary, I applaud the signers of the Civil Society Institute letter for their concern regarding climate change and for their support of solar, wind, and efficiency. Their call for us to rethink our positions on nuclear power is most welcome, and I ask only that they rethink their position with respect to nuclear power with the same degree of receptivity and objectivity that they ask of us.

I would like to add one point: There is no perfect energy source. What motivated Caldeira, Emanuel, Hansen and Wigley to propose that the environmental community reevaluate their position is because opposition to nuclear is support for coal. Nuclear power is the only scalable, dispatchable, low-carbon energy source that is economically acceptable to China, India and the rest of the fast-developing world. And per terrawatt-hour of delivered energy, nuclear electricity has proven to be one of the safest sources: slightly better or slightly worse than onshore wind, depending on which study you read. There is no perfect energy source.

James Hansen et al “the accepted 2 degrees target is dangerously too warm”

“Although there is merit in simply chronicling what is happening, there is still opportunity for humanity to exercise free will.

I have finally found the time to read the entire Hansen et al paper Assessing “Dangerous Climate Change”. The complete paper was released December 3rd on the open access journal PlosOne as Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature.

I think this is one of the most important climate papers of 2013. James Hansen and 17 coauthors succeed to boil down the current state of climate research to 26 pages (including the five pages of references). The authors make a strong case that the two-degree-consensus is dangerous.  Unlike other high profile climate scientists, actions are proposed that will actually work, included the “N word” advanced 4th generation nuclear power.

To announce the paper Hansen and coauthor Pushker Kharecha published a letter outlining the case that two degrees is dangerous, then go straight into solutions: cooperative technology development and deployment, and especially, rapid deployment of gen 3+ and gen 4 nuclear power. 

(…snip…) Governments should also support technology research, development and demonstration of carbon-free energy including advanced generation nuclear power as well as renewable energy, especially in view of the urgency with which emissions from coal and unconventional fossil fuels must be eliminated. (Unconventional fossil fuels include tar sands, shale-derived oil and gas, and methane hydrates.)

(…snip…)

A preferable approach, for the sake of both global climate and local pollution reduction, would be a combination of renewable energy and advanced (3rd and 4th) generation nuclear power plants2. Abundant affordable clean energy is essential to provide the energy needed to raise billions of people out of poverty, which empirical evidence indicates is a requirement for reducing fertility rates, thus lowering human population, and giving hope that we can provide the opportunity of a good life to all humanity while allowing other life on the planet to flourish.

When the world’s leading nations recognize the urgency of phasing out fossil fuel emissions, and realize that we are all in the same boat, it should be possible to agree on cooperative technology development and deployment. History, including World War II and the Apollo program, reveal how rapidly technology can be developed and deployed. Phase-out of most coal emissions and a substantial reduction of oil and gas use could be achieved rapidly. This would require agreement among leading nations not only to have common internal rising carbon fees, but also an agreement to cooperate in rapid technology development.

Surely rapid phase-down of coal emissions requires a major role for advanced-generation safer nuclear power. Nuclear technology has advanced significantly over the past few decades such that there is now the potential to produce modular 3rd generation light-water reactors that are passively safe, i.e., reactors that would shut down automatically in case of an anomaly such as an earthquake and have the ability to keep the nuclear fuel cool without an external power source. The same concept, modular3 simplified reactor design with factory production and shipping to the utility site, is appropriate for 4th generation reactors, and these should also be pursued to deal with nuclear waste, utilizing the waste as fuel.

Fortunately, the place where deployment of advanced nuclear technology is most urgently needed, China, is also the place that has the potential to rapidly build and grow the manufacturing capability. What is needed is cooperation with nations that have developed relevant technical abilities, especially the United States. Such cooperation has potential for enormous mutual and global benefits via development of scalable affordable carbon-free energy. Contrary to assertions of dedicated anti-nuke activists, such technology can be made more resistant than existing technology to exploitation by terrorists who may seek weapons material. Dangers from rogue states or terrorists will always exist, and the best way to minimize such danger is to cooperate in developing the safest technology, not to pretend that anti-nuclear activism will cause nuclear technology to disappear from the planet.

The principal policy allowing renewable energies to grow to almost 2% of global energy use has been laws imposing specified “renewable energy portfolio standards” (RPS) on utilities or other mandates for renewable energy use. These policies have aided growth of renewables, and by spreading costs among all utility customers of feed-in tariffs, added transmission lines, and the backup power needed for intermittent renewables (usually fossil fuel based), the electricity cost has been bearable as long as the portion of renewables is small. Now for the sake of moving rapidly to carbon-free power while minimizing electricity costs, the need is for “clean energy portfolio standards” (CPS), thus allowing nuclear energy to compete with renewable energies.

The previously discussed 3 November open letter ‘To Those Influencing Environmental Policy But Opposed to Nuclear Power’ has provoked much needed debate. Let us hope that this new paper and the PlOS ONE call for solutions papers builds on that interest to get something done.

there is still opportunity for humanity to exercise free will.

and free will means “be effective” not more failed “Kyoto commitments”.

‘To Those Influencing Environmental Policy But Opposed to Nuclear Power’

James Hansen, arguably America’s most famous climate scientist, has been a forceful advocate for nuclear power, including fast reactors such as the IFR that convert nuclear “waste” into zero carbon electricity: James Hansen on Kool-Aid, the Easter Bunny and the Tooth Fairy.

(…) people who accept the reality of climate change are not proposing actions that would work. This is important, because as Mother Nature makes climate change more obvious, we need to be moving in directions within a framework that will minimize the impacts and provide young people a fighting chance of stabilizing the situation.

The Easter Bunny and Tooth Fairy

The insightful cynic will note: “Now I understand all the fossil fuel ads with windmills and solar panels – fossil fuel moguls know that renewables are no threat to the fossil fuel business.” The tragedy is that many environmentalists line up on the side of the fossil fuel industry, advocating renewables as if they, plus energy efficiency, would solve the global climate change matter.

On 3 November Dr. Hansen and three other top climate scientists joined together in an open letter directed at the Baptists in the “Bootleggers and Baptists” coalition that have made it impossible to make any real progress decarbonizing the global economy. Some examples of the Baptists are Greenpeace, Friends of the Earth (FOE), and National Resources Defense Council (NRDC). We expect Bootleggers such as Peabody Energy to promote coal powered electricity. The tricky part is that the Bootleggers support the Baptists – who claim to be concerned about the environment. At the same time they contradict themselves by blocking every effort to deploy the one energy option that can scale affordably to achieve a zero carbon economy. If it isn’t affordable, reliable clean energy, then China, India et al are not going to stop building coal plants.

Based upon what I have read in recent weeks, the November 3rd open letter has had more impact than the individual scientist’s efforts. The letter has launched a long-avoided conversation about the critical importance of nuclear in the zero carbon energy mix. Regular Seekerblog readers will be familiar with signatory scientists Caldeira, Emanuel, Hansen and Wigley. Here’s the full text of their letter:

To those influencing environmental policy but opposed to nuclear power:

As climate and energy scientists concerned with global climate change, we are writing to urge you to advocate the development and deployment of safer nuclear energy systems. We appreciate your organization’s concern about global warming, and your advocacy of renewable energy. But continued opposition to nuclear power threatens humanity’s ability to avoid dangerous climate change.

We call on your organization to support the development and deployment of safer nuclear power systems as a practical means of addressing the climate change problem. Global demand for energy is growing rapidly and must continue to grow to provide the needs of developing economies. At the same time, the need to sharply reduce greenhouse gas emissions is becoming ever clearer. We can only increase energy supply while simultaneously reducing greenhouse gas emissions if new power plants turn away from using the atmosphere as a waste dump.

Renewables like wind and solar and biomass will certainly play roles in a future energy economy, but those energy sources cannot scale up fast enough to deliver cheap and reliable power at the scale the global economy requires. While it may be theoretically possible to stabilize the climate without nuclear power, in the real world there is no credible path to climate stabilization that does not include a substantial role for nuclear power

We understand that today’s nuclear plants are far from perfect. Fortunately, passive safety systems and other advances can make new plants much safer. And modern nuclear technology can reduce proliferation risks and solve the waste disposal problem by burning current waste and using fuel more efficiently. Innovation and economies of scale can make new power plants even cheaper than existing plants. Regardless of these advantages, nuclear needs to be encouraged based on its societal benefits.

Quantitative analyses show that the risks associated with the expanded use of nuclear energy are orders of magnitude smaller than the risks associated with fossil fuels. No energy system is without downsides. We ask only that energy system decisions be based on facts, and not on emotions and biases that do not apply to 21st century nuclear technology.

While there will be no single technological silver bullet, the time has come for those who take the threat of global warming seriously to embrace the development and deployment of safer nuclear power systems as one among several technologies that will be essential to any credible effort to develop an energy system that does not rely on using the atmosphere as a waste dump.

With the planet warming and carbon dioxide emissions rising faster than ever, we cannot afford to turn away from any technology that has the potential to displace a large fraction of our carbon emissions. Much has changed since the 1970s. The time has come for a fresh approach to nuclear power in the 21st century.

We ask you and your organization to demonstrate its real concern about risks from climate damage by calling for the development and deployment of advanced nuclear energy.

Sincerely,

Dr. Ken Caldeira, Senior Scientist, Department of Global Ecology, Carnegie Institution

Dr. Kerry Emanuel, Atmospheric Scientist, Massachusetts Institute of Technology

Dr. James Hansen, Climate Scientist, Columbia University Earth Institute

Dr. Tom Wigley, Climate Scientist, University of East Anglia and the National Center for Atmospheric Research

What does this mean for citizens? China, India, Brazil et al are focused on economic growth, and hence on expanding their energy supplies as rapidly as they can. That means cheap energy. “Cheaper than Coal” is the only energy policy path that doesn’t lead to massive emissions increases.

Nuclear is the only option that can deliver Cheaper than Coal at scale. And nuclear can compete sooner and more successfully if the technology leaders such as UK, America, France and Sweden help China et al to deploy mass manufactured nuclear power. But sadly, the anti-nuclear campaigns of the Baptists have been so successful that there is no hope of holding the line at 2°C. Almost all of the nuclear plants that could have been built have been replaced with coal [*]. 

Some of the more informed discussion of the scientists’ open letter has been at Andrew Revkin’s Dot Earth.

[*] Today in a few specific markets, such as America, many methane (gas) plants are being deployed. Burning methane initially produces 50% of the CO2 per MW that coal generates, but any methane that leaks is 20 times as bad for warming. And those plants won’t be destroyed until they have lived out their lives – which means 40+ years that could have been zero-carbon power.

A Common Fallacy in the Energy and Climate Debate

Schalk Cloete is a South African research scientist, currently working in Norway on fluidized bed reactor research. Schalk has recently published a string of excellent energy policy essays, including the captioned piece explaining why it is the developing world that matters. If one only follows the usual media you would have been taught that saving the planet from climate change depends on America passing “cap and trade”, or German citizens paying extraordinarily high energy prices to subsidize wind and solar.

The reality is the developed world must help the developing world to rapidly decarbonize at levelized costs comparable to building more coal plants. The following charts summarize where future CO2 emissions are going to come from – both are courtesy of ExxonMobil’s recent “Outlook for Energy“: 

Click to enlarge

Click to enlarge

In the real world China, India, Brazil and the other developing regions are going to be focused on growth, on expanding their energy supplies as rapidly as they can. That means cheap energy. As the Google Foundation phrased it “Cheaper than Coal” is the only way forward that doesn’t lead to massive emissions increases. In brief the Greenpeacers trying to shut down American nuclear plants should be helping the Chinese climb the nuclear deployment learning curve safely and rapidly.

I highly recommend Schalk’s essay, which I believe is accurate in all the quoted facts. My only disagreement is that I think he is much more optimistic than I that CCS will play an important role in decarbonization. The essay concludes with this summary (emphasis mine):

What does this mean?

People participating in the energy and climate debate should be very careful of always approaching these issues from a developed world point of view. This view is simply not applicable to the part of the world where the most energy is consumed and the most CO2 is emitted. In fact, two short decades from now, the developing world may very well emit triple the amount of CO2 of the developed world.

It is vital that we accept the objective reality that developing world citizens will not prioritize pollution reduction (CO2 and other) over economic growth unless it is very cheap and highly practical. Clean solutions need to come pretty close to a steady, dispatchable coal-fired electricity supply at $0.04/kWh, practical and reliable new cars at $10000 apiece, and direct industrial heat at $0.01/kWh (coal at $70/ton).

Realistically, this implies CO2 capture and storage (CCS), nuclear and large hydro for electricity, a great focus on more efficient internal combustion engines and hybrids for transportation and CCS for direct industrial applications. The green dream of solar panels, wind turbines, batteries and EVs quite simply is nowhere close to being able to facilitate rapid developing world growth (see this previous article for example).

In addition, the green dream is still just a dream even in the developed world (non-hydro renewables provide only 3.1% of OECD energy), implying that decades of typically slow trial and error are still required before this largely theoretical world of distributed and intermittent electricity generation, intercontinental super-grids, smart demand management and large scale energy storage can become a reality. The developing world doesn’t want slow trial and error, it wants proven systems that can drive rapid growth on a very large scale right now.

Unfortunately, the developed world has neglected CCS and is abandoning nuclear, thereby leaving renewables as the only clean energy alternative that can be copied by developing nations. Given this state of affairs, it should come as no surprise that traditional energy sources accounted for fully 96.1% of the non-OECD energy consumption increase from 2011 to 2012 – a value very similar to the 96.5% average over the past 5 years.

Realistically speaking, if the developed world wants to make a real contribution, it should develop and mature clean energy technology that can be seemlessly integrated into the traditional energy systems currently being copied and expanded rapidly by developing nations. CCS is arguably the most important of these with fourth generation nuclear as an important longer-term prospect. It is also important that the developed world curbs its current anti-nuclearism so that this resistance does not prevent the buildout of third generation nuclear in developing nations.

Yes, the green dream is ideologically extremely attractive, but, as this article has hopefully demonstrated, it is simply not compatible with billions of developing world citizens flocking to megacities in search of higher living standards. The premature pursuit of this dream will do little other than sustain the rapid increase of CO2 emissions in the developing world while further worsening the already highly fragile economic situation in the developed world. There really is no need to make things so hard for ourselves.

It really doesn’t matter what a Manhattan party hostess thinks or wants. What matters are the decisions taken by the Beijing bureaucrats.

Ben Heard on “The most inconvenient of truths”

Tell people something they know already and they will thank you for it. Tell them something new and they will hate you for it. George Monbiot

Australian sustainability consultant Ben Heard recently published a well-written account of how he discovered “that basically everything I thought I knew about nuclear power was wrong.” Ben’s history parallels that of the high profile environmentalists featured in Robert Stone’s Sundance-acclaimed documentary Pandora’s Promise (trailer). Here’s an excerpt to motivate you to read the whole of Ben’s essay:

(…snip…) I was badly stuck. Career number two was coming unglued under the weight of cognitive dissonance. The problem did not just beat my solutions. It squashed them and barely noticed.

That’s when the words of one of my student colleagues (not coincidentally a Frenchman) paid me a return visit. He had said “I don’t know why you make it so hard here. We just used nuclear power. If everyone had (then) we would be clean, and all driving electric cars!”

I had ignored him at the time. Obviously, my brain had filed it under “Existential Sustainability Crisis”. With a quiet curiosity I set about to decide whether an answer might lie in the energy source I had not just ignored, but actively demonised.

A few years later I had my answers and they shamed me. Applying the same brand of scrutiny to this issue as I had to learning about climate change, I discovered that basically everything I thought I knew about nuclear power was wrong. It was undoubtedly the greatest single tool available to us in the fight against climate change, and my country had outlawed it. I was compelled to share what I had learned for a simple reason. Australia needs significant deployment of nuclear energy to respond adequately to climate change. Little else will do more than nibble the edges of our gross dependence on fossil fuels.

This pathway has been a fascinating journey. I have, at times, discovered what Monbiot meant about being hated for telling people something new. One of the many upsides is I have met some amazing people, including Academy-nominated film director Robert Stone. Robert and I clicked on an important point: planning climate change action on the presumption that people will not support nuclear energy is a mistake. We can bring people with us on this issue. I have learned this to my delight as I have been all over the country speaking to thousands of Australians. What I craved though was a way to scale up this effort, reach more people, and start a bigger conversation.

That’s why Robert’s new film, Pandora’s Promise, is so important. It brings the requisite scale to the most inconvenient of truths. It is those of us who have been championing the cause of our climate who must change our views on nuclear if we are to achieve the outcomes we seek.

Thanks Ben – an excellent post!

Fukushima Syndrome

Martin Freer is Professor of Nuclear Physics at the University of Birmingham and Director of the Birmingham Center for Nuclear Education and Research. He is a member of the University of Birmingham’s policy commission on nuclear energy, which later this year will publish Nuclear Power: What Does the Future Hold?

The dramatic events that unfolded at Japan’s Fukushima Daiichi nuclear-power plant after last year’s tsunami are commonly referred to as “the Fukushima disaster.” We need look no further than this description to begin to understand the significant misconceptions that surround nuclear energy.

mackay_deaths_per_gwy.jpg

It was the tsunami, caused by the largest earthquake ever to strike Japan, that killed more than 16,000 people, destroyed or damaged roughly 125,000 buildings, and left the country facing what its prime minister described as its biggest crisis since World War II. Yet it is Fukushima that is habitually accorded the “disaster” label.

In fact, although what happened was shocking, the events in the hours and days after a giant wave slammed over the nuclear plant’s protective seawall might be interpreted as a remarkable testament to nuclear power’s sound credentials. To be sure, the environmental impact on those living close to Fukushima may take many years to remediate. But the response in many quarters – not least in Germany, Switzerland, and other countries that immediately condemned and retreated from nuclear energy – once again typified an enduring lack of knowledge concerning two fundamental issues.

The first is safety; the second is radiation. We need to promote a much more inclusive and informed dialogue about both if nuclear power is to be assessed on its genuine merits, rather than dismissed on the grounds of little more than ignorance and intransigence.

Would the many people who would ban nuclear power also prohibit air travel? After all, the parallels between the two industries are central to the question of safety.

We are often told that air travel, statistically speaking, has a better safety record than any other form of transport. The numerous interrelated reasons for this might usefully be summarized by comparing an airplane to a bicycle.

(…)

Read more. The Freer article is one of several in Project Syndicate’s Fukushima special issue.

The chart at left, of fatality rates for our main energy options, is courtesy of Cambridge physicist David MacKay, from his not to be missed “Sustainable energy without the hot air“. Dr. MacKay is now Chief Scientific Advisor for DECC (UK Government Department for Energy and Climate Change).

James Conca on the Waste Isolation Pilot Project (WIPP)

James was interviewed for Nuclear Energy Insight:

January 2011—James Conca is senior scientist for the Institute for Energy and the Environment at New Mexico State University. He is a former director of the Carlsbad Environmental Monitoring and Research Center (CEMRC), an independent project of the Waste Isolation Pilot Project (WIPP) nuclear waste repository near Carlsbad, N.M.

James ConcaHe is also the co-author, with Judith Wright, of “The Geopolitics of Energy: Achieving a Just and Sustainable Energy Distribution by 2040.” The book advocates a national energy policy that allows the United States to get one-third of its electricity from fossil fuels, one-third from nuclear energy and one-third from renewable energy by 2040.

Nuclear Energy Insight asked Conca to share his perspective on energy policy and radioactive waste disposal.

(…) Q: Tell me about the Waste Isolation Pilot Project.

Conca: WIPP stores defense-related radioactive waste, called transuranic waste. It has to be remotely handled, shielded, the whole bit. We’ve been doing this for 11 years now.

There are no unknowns. We know exactly how much [a deep geologic repository] costs. We know exactly how to do it. It’s incredibly safe. The United States has a deep geologic nuclear repository that’s half-full and nobody even knows about it.

Q: What have been the findings of the Carlsbad Environmental Monitoring and Research Center?

Conca: We have a 15-year record of the environment from before WIPP opened to the present. CEMRC has been operating since 1996 and WIPP since 1999. There’s been no change [in radioactivity at the site].

Read the whole thing. James will be speaking at the National Nuclear Fuel Cycle Summit (NNFCS), taking place April 2-5, 2012 in Carlsbad, New Mexico.

Fukushima’s Refugees Are Victims Of Irrational Fear, Not Radiation

Amid the Fukushima hysteria Germany has decided to shut down its nuclear reactors and import more natural gas from Putin and more nuclear energy from France and the Czechs. This does not make sense, either economically, politically or with respect to safety. If Germans or Japanese are that worried about radiation then a more sensible course of action would be to stop eating potato chips, beets, brazil nuts and bananas, all of which are relatively high but ultimately harmless sources of radiation.

The first anniversary of the 2011 Tōhoku earthquake and tsunami has brought on a silly season of sensational, uninformed fear-mongering (Rod Adams has a representative rogues gallery at the end of his critique). So today I was pleased to see a science-based analysis by Dr. James Conca, an international expert on the environmental effects of radioactive contamination.

Every time I eat a bag of potato chips I think of Fukushima. This 12-ounce bag of chips has 3500 picoCuries of gamma radiation in it, and the number of bags I eat a year gives me a dose as high as what I would receive living in much of the evacuated zones around Fukushima. But unlike the Fukushima refugees, I get to stay in my home. We live in a nuanced world of degree. Eating a scoop of ice cream is fine, eating a gallon at one time is bad. Jumping off a chair is no big deal; jumping off a cliff is really stupid. The numbers matter. It’s the dose that makes the poison. There is a threshold to everything.

The radiation in those potato chips isn’t going to kill me. Likewise, no one is going to die from Fukushima radiation. Cancer rates are not going to increase in Japan. The disaster wasn’t hidden like the Soviets did, so that people unknowingly ate iodine-131 for two months before it decayed away to nothing. No one threw workers into the fire like lemmings because they didn’t know what to do.

(…) This idea, known as the Linear No-Threshold Dose hypothesis (LNT), was adopted in 1959 as the global regulating philosophy and remains entrenched against all scientific evidence. It is an ethical nightmare. And it will destroy Japan’s economy.

It‘s keeping 100,000 Japanese citizens as refugees, as it did almost a million Ukrainians. It will waste $100 billion that’s needed to rebuild the devastation from the tsunami, not protect against a large intake of potato chips. It will cause more injury to Japan’s already beleaguered population and damaged economy, for no benefit.

We set thresholds to protect people against harm, and we’ve done a good job. The Clean Water Act, the Clean Air Act, seat belts, coal flue scrubbers, all have saved millions of lives and made the quality of life better for everyone. But thresholds need to be set with reason. We don’t stop driving just because 50,000 people still die on the roadways each year, or stop heating our homes because 1,000 people die every month from coal particle inhalation. We try to make it safer and we deal with things as they occur.

For radiation this philosophy has failed. The LNT theory has been long since disproven. We are bathed in radiation every day and we know that low levels of radiation or even ten times background levels have never hurt anyone. It doesn’t cause cancer. Yet the global fear of nuclear energy and radiation has diverted billions of dollars from more serious health issues. The amount of funding the U.S. spent since 1990 protecting against what, in many parts of the world, are background levels of radiation, could have immunized the entire continent of Africa against its three worst scourges. Instead we saved not one life. This is an ethical issue. The science is easy, the politics are not.

Highly recommended. Read the whole thing »

James L. Conca is Director of NMSU Carlsbad Environmental Monitoring and Research Center (CEMRC), his CV including publications.

Nuclear safety projects launched in China

This looks like smart policy:

A series of research and development (R&D) projects has been launched by China’s National Energy Administration (NEA) to improve the country’s emergency response capabilities at nuclear power plants in the event of an extreme disaster.

The NEA said that the projects are aimed at improving safety-related technology employed in Chinese nuclear power plants, taking into account lessons learned from the Fukushima accident in Japan.

A total of thirteen R&D projects are to be conducted by China National Nuclear Corporation (CNNC), China Guangdong Nuclear Power Corporation (CGNPC) and the Institute of Nuclear and New Energy Technology in cooperation with Tsinghua University. Engineers and researchers will work to develop advanced nuclear power safety technology through targeted research and plant site analyses, the NEA said.

The R&D projects will include the development of passive emergency power supply and cooling water systems, as well as development of passive containment heat removal systems. The projects will also analyse the impact of multiple simultaneous external events and response measures. Research into beyond design basis earthquake and external flooding, as well as measures for the prevention and mitigation of used fuel accidents will also be conducted. Projects will also cover beyond design basis accident mitigation equipment and systems, while others are aimed at developing hydrogen control devices and emergency rescue robots. Other projects will study the monitoring and treatment of contaminated ground and water.

All the projects are expected to be completed by 2013. According to the NEA, implementation of the results will improve the safety of China’s second-generation nuclear power plant technology by lowering the probability of large early radioactive releases and reactor core damage.

Researched and written
by World Nuclear News

[From Nuclear safety projects launched in China]

MacKay: risk assessment for energy-related severe accidents

mackay_deaths_per_gwy.jpg

We made the mistake of lumping nuclear energy in with nuclear weapons, as if all things nuclear were evil. I think that’s as big a mistake as if you lumped nuclear medicine in with nuclear weapons. –Patrick Moore, former Director of Greenpeace International

UPDATE: I’ve bumped the timestamp on this post to 2012 for (my) ease of access.

In his marvelous “Sustainable energy without the hot air” David Mackay’s Chapter 24 Nuclear? examines nuclear power. From that chapter I extracted the memorable Moore quote above, and the graphic at left.

For my own reference I wanted to include David’s computation of deaths per GWy (gigawatt-year), which he has extracted from two of the studies we’ve already referenced (ExternE, and the Paul Scherrer Institute).

The graphic at left has translated those studies into David’s preferred units of GWy. Here’s an excerpt from David’s analysis of comparative energy generation risks:

(…) When quantifying the public risks of different power sources, we need a new unit. I’ll go with “deaths per GWy (gigawatt-year).” Let me try to convey what it would mean if a power source had a death rate of 1 death per GWy. One gigawatt-year is the energy produced by a 1 GW power station, if it operates flat-out for one year. Britain’s electricity consumption is roughly 45 GW, or, if you like, 45 gigawatt-years per year. So if we got our electricity from sources with a death rate of 1 death per GWy, that would mean the British electricity supply system was killing 45 people per year. For comparison, 3000 people die per year on Britain’s roads. So, if you are not campaigning for the abolition of roads, you may deduce that “1 death per GWy” is a death rate that, while sad, you might be content to live with. Obviously, 0.1 deaths per GWy would be preferable, but it takes only a moment’s reflection to realize that, sadly, fossil-fuel energy production must have a cost greater than 0.1 deaths per GWy – just think of disasters on oil rigs; helicopters lost at sea; pipeline fires; refinery explosions; and coal mine accidents: there are tens of fossil-chain fatalities per year in Britain.

So, let’s discuss the actual death rates of a range of electricity sources. The death rates vary a lot from country to country. In China, for example, the death rate in coal mines, per ton of coal delivered, is 50 times that of most nations. Figure 24.11 shows numbers from studies by the Paul Scherrer Institute and by a European Union project called ExternE, which made comprehensive estimates of all the impacts of energy production. According to the EU figures, coal, lignite, and oil have the highest death rates, followed by peat and biomass-power, with death rates above 1 per GWy. Nuclear and wind are the best, with death rates below 0.2 per GWy. Hydroelectricity is the best of all according to the EU study, but comes out worst in the Paul Scherrer Institute’s study, because the latter surveyed a different set of countries.

David then moves on to one of my favorite topics, which he terms Mythconceptions, which include “nuclear involves huge amounts of concrete and steel whose creation involves huge CO2 pollution” and “Isn’t the waste from nuclear reactors a huge problem?” For those discussions please visit the site and buy the book! Which is now available in a Kindle version for only USD $27, the best book value I have ever purchased.

For more on Dr. MacKay and the book please see my Oct 2009 post.