Princeton PAW: Nuclear power’s safety

While researching the anti-nuclear history of Frank von Hippel I noted a brief interview on Fukushima April 27, 2011 with the Princeton Alumni Weekly. His comments irritated another Princeton alumnus — US Navy nuclear expert Ted Rockwell. Ted’s response to von Hippel is here:

Published on June 1, 2011

Knowing Princeton’s historic contributions to early nuclear-energy technology, I’m sad that nuclear commentary from Princeton is now generally from the Woodrow Wilson School of Public and International Affairs. Frank von Hippel’s response to the question of safety at Fukushima (A Moment With, April 27) is typical:

“These reactors were not designed for inherent safety. These are the descendants of submarine propulsion reactors, where safety has been an add-on … I think this technology could be safe. But I don’t think that the people running these plants, and the people regulating them, are producing that result.”

Over a period of two human generations (50-plus years), our nuclear navy has driven 526 nuclear-reactor cores 150 million miles without a single ­radiological incident. The commercial nuclear-power program based on that technology has safely and reliably ­generated 20 percent of America’s electricity. Half of that electricity is fueled by uranium taken from converted Russian missile warheads. No one has been killed by radiation from either our naval or our commercial nuclear programs. I believe the same is true of the Japanese program, including Fukushima. How would von Hippel improve on that record?

He mentions the Soviet Chernobyl reactor, “the one big accident we’ve had so far.” That’s irrelevant. No one is planning to build more Chernobyls. But von Hippel’s statement that this reactor meltdown “shortened the lives of about 10,000 people by cancer” is false — a shuffling of A-bomb data improperly applied to Chernobyl. As the U.N. ­Scientific Committee on the Effects of Atomic Radiation, WHO, and Red Cross reports have been demonstrating for 25 years, the actual number of ­cancer cases was not increased by the accident.

Theodore Rockwell ’43 *45 p’70

Chevy Chase, Md.

Editor’s note: Rockwell’s six decades of involvement in nuclear power include work as technical director of the Naval Nuclear Propulsion Program. The U.S. Department of Energy recently made his 1956 Reactor Shielding Design Manual available free to the public on its website.

Ted’s letter elicited three comments from other Princeton alums — all favorable. The last posted September 1st is by Rick Mott, who proposes that Princeton install a SMR:

Rick Mott ’73 Says: 2011-09-01 11:27:31

I’ve been traveling all summer, or I’d have responded sooner. We’ve heard from the ’40s, ’50s, and ’60s — I guess it’s time for the ’70s to chime in. I gave a talk at my kids’ school for Earth Day, six weeks after Fukushima, entitled “A Rational Environmentalist’s Guide to Nuclear Power”. A greatly expanded version of that talk is available here: I’m throwing down a challenge. If Princeton truly believes carbon emissions are a problem, it should install a small modular reactor to power the existing cogeneration plant, and reduce its emissions from electricity consumption not to 1990 levels, but to near zero. The detailed case is made here: The problems with this are not technical, but political, legal and regulatory. It will take a decade for the discussion to play out, but Princeton is uniquely qualified to educate the public on this issue. The best way to do that is in the context of a concrete proposal which is the opposite of NIMBY. Do we fear students would refuse to attend a nuclear-powered Princeton? Then we should tell them it’s already 50% nuclear. Half of New Jersey’s electricity comes from Oyster Creek. Any responses from the four decades after us old-timers?

Rick knows radiation (he is PulseTor’s Chief Technical Officer). I recommend Rick’s Earth Day slideshow at SCRIBD  “A Rational Environmentalist’s Guide to Nuclear Power”. It is scientifically correct and an effective presentation. E.g., after presenting the facts about life cycle risks for each energy source, including a detailed review of Chernobyl, Rick asks:


In the radiation section of Rick’s tutorial he explains why LNT is wrong. One of his quips was perfect

80 aspirin at once will kill half the people “exposed” ́ to them. LNT would therefore predict 2 aspirin would kill 1.25% of users. So don’t take two aspirin and call me in the morning.

Another excellent piece by Rick is published by PubMed Central reviewing the paper “Can Psychiatric Approaches Help to Address Global Warming?”

Richard B. Mott, Ringoes, New Jersey ; Email:

To the Editor:

As it turns out, I am an engineer involved in radiation detection systems. This past Earth Day, I gave a talk at my kids’ school advocating the greatly increased use of nuclear power instead of fossil fuels for electricity generation. New Jersey derives about 50% of its power from nuclear energy. If the entire country did the same, we would stop the emission of perhaps 400 million tons of CO2 per year. The entire country of France gets about 75% of its electricity from nuclear power.

Many people who think of themselves as environmentalists oppose nuclear power out of what can only be called a phobia, a wild overestimation of both the risk of accident and the actual level of risk even in the event of an accident. Chernobyl was horrible, yet 20 years later the excess cancers can only be statistically detected in 2 groups. First, there were about 4000 excess childhood thyroid cancers over 10 years, which is particularly shameful because most could have been prevented with potassium iodide prophylaxis had the population been notified promptly. Second, a physician in Scotland has found a statistically detectable increase in cancers among the children of mothers at an early stage of pregnancy, when the developing fetus is known to be highly sensitive to radiation. Spread over the entire population of Europe and 20 years, this is regrettable but hardly the Black Death all over again. The scary numbers you see bandied about are statistical projections over the entire population for its entire lifetime, and undetectable against background cancer rates.

And that was a worst-case accident. New technology makes the loss-of-coolant accident typified by Chernobyl and Three Mile Island impossible, and also makes it much harder to divert the fuel for nuclear weapons. See the article “Heavy Metal Nuclear Power” by Eric Loewen. The technology is also briefly described at, which discusses small reactors for third-world application that don’t need refueling for 15–20 years.

No less an environmental icon than Stewart Brand, author of the Whole Earth Catalog, has turned in favor of nuclear power. See Nuclear power is the only technology that has a chance of substituting for a significant fraction of fossil-fuel consumption over the coming decades. China is building one new coal-fired power plant every week. So if you really want psychiatry to help stop global warming, cure our national phobia of nuclear energy![1]