Printable ‘bionic’ ear melds electronics and biology

This Princeton University press release merits some further investigation. Progress in bionics is accelerating faster than we realized. Example from the end of the bulletin:

(…) Creating organs using 3-D printers is a recent advance; several groups have reported using the technology for this purpose in the past few months. But this is the first time that researchers have demonstrated that 3-D printing is an effective strategy for interweaving tissue with electronics.

The technique allowed the researchers to combine the antenna electronics with tissue within the highly complex topology of a human ear. The researchers used an ordinary 3-D printer to combine a matrix of hydrogel and calf cells with silver nanoparticles that form an antenna. The calf cells later developed into cartilage.

Manu Mannoor, a graduate student in McAlpine's lab and the paper's lead author, said that additive manufacturing opens new ways to think about the integration of electronics with biological tissue and makes possible the creation of true bionic organs in form and function. He said that it may be possible to integrate sensors into a variety of biological tissues; for example, a doctor could replace a patient's torn knee meniscus with a bionic one to monitor strain on the new cartilage during physical activities to prevent another tear.

I'll have that new meniscus please.

One thought on “Printable ‘bionic’ ear melds electronics and biology

Comments are closed.