Is there a way forward for Japan’s post-Fukushima fears?

Radiation and reason
Cover art: Spencer Weart’s “The Rise of Nuclear Fear”; Wade Allison’s Radiation and Reason

The survivors of Japan’s Tohoku Earthquake have suffered so much. The former residents of the Fukushima exclusion zone are bearing the additional stress of nuclear fear. Polling of former residents indicates that fewer than one-half may be willing to return. There is so much radiation fear and distrust of government.

Radiophobia is common in Japan, probably explaining why the government enacted radiation standards much lower than scientifically justified; and why politicians nourished expectations of nuclear power perfection. Combining this history with the mismanagement of the Fukushima accident has put Japan in a very unfortunate position:  Japan’s economy is damaged by importing fossil fuels to replace the almost 30% of their electricity generation that has been closed. And the widespread radiophobia may prevent restarting the majority of Japan’s 43 operable reactors. In addition to Japan’s economic stress, the fear of nuclear catastrophe is causing Japan to share their fear globally – as unnecessary carbon emissions.

How to help the Japanese people shift to a realistic view of the benefits vs. risks of restarting their nuclear fleet?

Consider the segment of the American population with similar fears of apocalyptic nuclear accidents. If you wanted to form a Presidential Commission to evaluate and report on the entire range of energy options – who would you nominate that could influence the fearful? Who would I nominate? George P. Shultz is an easy choice. If he accepted, the rest of the recruiting would go well. My next call would be to Burton Richter. Besides his deep competence and gravitas he has long experience with just this sort of public policy responsibility, and practical experience with getting things done in government. As an example Burt has been a key contributor to the California Council On Science And Technology project “Policies for California’s Energy Future”. My third pick would be Jane Long – who coincidentally was the very effective leader of the enlightened CCST project.  

Surely Japan has public figures of similar skills and stature. Who are they? How much impact could such an “Japan Energy Commission” have on public fears? Could such a commission get the ear of Japan’s heavily anti-nuclear media?

A complementary approach could be to adapt Robert Stone’s concept of building a high-credibility story around “switchers”. If Robert himself could be enlisted to this project he would be a powerful agent of change. I’m sure he could train a Japanese counterpart. As a director Robert knows how to organize the effort to tell a compelling story. There must be Japanese anti-nuclear campaigners who have switched?

Regarding funding of such a project, moving Japan towards a pragmatic energy policy isn’t just for Japan’s benefit. Earth’s atmosphere will obviously say “Thank you” for reduced Japanese emissions. Emissions aside, Germany plus Japan’s nuclear shutdown is having a big negative impact across the globe. If Japan restarts most of their nuclear fleet that will send a very helpful signal.

 

California’s Energy Future: 2013 Travers Conference UC Berkeley

Recently I was searching for the most up-to-date presentation of the ongoing research study “California’s Energy Future – The View to 2050″. This study was funded by the California Council on Science and Technology (CCST), staffed by about forty energy experts. The original report was published in May 2011(Summary Report [PDF]). This CCST study is one of the few examinations of regional decarbonization that “adds up” in the David MacKay sense. For an introduction to this systematic study I will recommend chairperson Jane Long’s 2013 keynote [Youtube] presented at the Travers Conference at UC Berkeley. Her talk is about 40 minutes – a clear presentation of the reality that we know how to do about only half of what’s required to achieve California’s S-3-05 requiring 80% reduction of CO2 below 1990 by 2050. Jane’s slide deck is itself a valuable resource for explaining energy realities to others. The announcement of the 2013 Travers Conference includes the following hint that California isn’t going to get where it says it is going.

The state of California has embraced an ambitious goal of meeting its future energy needs while increasing its use of renewable energy. But a recent Little Hoover Commission report finds that the state has failed to develop a comprehensive energy strategy that confronts the difficult tradeoffs it faces. The 16th Annual Travers Conference on Ethics & Accountability in Government will investigate the tradeoffs represented by reliance on different energy sources, including oil, natural gas, nuclear energy, biofuels, and wind and solar power.

The fact that nuclear physicist, former director of SLAC and Nobel laureate Burton Richter was selected as one of the six lead authors indicates to me that CCST assembled a team of serious people. You can assess for yourself in Dr. Richter’s July 2011 summary presented at the release event “CCST Report on Nuclear Power in California’s 2050 Energy Mix”. The presentation begins with this:

Report Highlights

The report assumes 67% of California’s electricity will come from nuclear while the rest is renewables as called for in AB-32. This would require 44 Gigawatts of nuclear capacity or about 30 large reactors. While reactor technology is certain to evolve over the period of interest, we assumed that they will be similar to the new generation of large, advanced, light-water reactors (LWR), known as GEN III+ that are now under review by the U.S. Nuclear Regulatory Commission. This allows us to say something about costs since these are under construction in Asia and Europe, and a larger number of similar systems have been built in Asia recently. Our main conclusions on technical issues are as follows:

  • While there are no technical barriers to large-scale deployment of nuclear power in California, there are legislative and public acceptance barriers that have to be overcome to deploy new nuclear reactors.
  • The cost of electricity from new nuclear power plants is uncertain in the United States because no new ones have been built in decades. Our conclusion is that six to eight cents per KW-hr is the best estimate today.
  • Loan guarantees for nuclear power will be required until the financial sector is convinced that the days of large delays and construction cost overruns are over. Continuation of the Price-Anderson act is assumed.
  • Nuclear electricity costs will be much lower than solar for some time. There is insufficient information on wind costs yet to allow a comparison, particularly when costs to back up wind power are included.
  • Cooling water availability in California is not a problem. Reactors can be cooled with reclaimed water or with forced air, though air cooling is less efficient and would increase nuclear electricity prices by 5% to 10%.
  • There should be no problem with uranium availability for the foreseeable future and even large increases in uranium costs have only a small effect on nuclear power costs.
  • While there are manufacturing bottlenecks now, these should disappear over the next 10 to 15 years if nuclear power facilities world-wide grow as expected.
  • There are benefits to the localities where nuclear plants are sited. Property taxes would amount to $50 million per year per gigawatt of electrical capacity (GWe) in addition to about 500 permanent jobs.

The full report discusses all these issues in more detail including weapons proliferation issues in a world with many more nuclear plants, spent fuel issues, and future options (including fusion). 

Dr. Richter ends with this 

In Summary: There are no barriers to nuclear expansion in California except legislative and public acceptance ones. The lessons of Fukushima are still being learned and will result in some new regulations. The repository problem is entirely political rather than technical.