We need an Energy Miracle — Here is How to Create that Miracle

Fact #1: Fossil Fuels continue to dominate global energy

M

Fact #2: Globally we are out of time – now need to increase decarbonization rate by factor of five. From PWC: Low Carbon Economy Index 2014 | 2 degrees of separation: ambition and reality

These two charts should make it clear that what we have been doing to eliminate fossil fuels is not working. This week we have seen more of the same non-functional, heat-but-no-light activity signified by a Feel-Good Climate March. Many of the marchers carried Anti-Nuclear signage. No doubt these are nice, sincere people. These are not serious people – they are not serious about climate change.

Harvard's Joseph Lassiter is serious about climate change. He is Professor of Management Practice in Environmental Management at Harvard Business School. Among his specialities is low carbon energy policies. He has just published the perfect response to the climate march feel-gooders. In this short essay Dr. Lassiter makes the essential points which I'll summarize as:

  1. Fossil fuel continues to dominate while both IEA and EIA forecast continuing fossil growth.
  2. We need an energy miracle.
  3. “That miracle comes in the form of “New Nuclear” power plants.”
  4. “The barriers to rapid progress in New Nuclear are not technical, not even economic. The barriers are in the outdated nuclear regulations that scare off private investors and in the nuclear industry-regulatory culture that accepts timelines measured in decades as normal. The world needs a New Nuclear miracle today.”
  5. “The US, EU and Japan have the technology infrastructure and the dynamic, startup companies to bring New Nuclear to the table quickly.”

Quoting Lassiter directly:

Entrepreneurs in the US, EU and Japan have the ideas. China and India and every other developing economy have the clear and compelling need. But to convert these new ideas into real alternatives, the world’s governments need to act. They must redesign their nuclear regulatory practices and provide physical facilities for prototype evaluation that will let private capital take on the tasks of technical innovation, experimentation, and rigorous stress testing, even as the eventual permitting authority remains with public regulators. Innovation and regulation must proceed hand-in-hand, but regulators must allow entrepreneurs to pursue their innovations with a relentless urgency that matches the severity of the unknowable threats that the world faces from global warming and ocean acidification.

Please read the entire essay, then send the essay to your elected representative, telling her that you expect to see legislation to reform nuclear regulation and also government support for the rapid development of New Nuclear. Thanks heaps to John Morgan @JohnDPMorgan for referring me to the Lassiter essay.

LNT, UNSCEAR and the NRC “State-of-the-Art Reactor Consequence Analyses”

UNSCEAR 2012 “Therefore, the Scientific Committee does not recommend multiplying very low doses by large numbers of individuals to estimate numbers of radiation-induced health effects within a population exposed to incremental doses at levels equivalent to or lower than natural background levels;”

The main NRC SOARCA page, which indexes the definitive 2012 NRC severe accident study. This study is large so I’ll rely on the NRC’s own words of summary:

SOARCA’s main findings fall into three basic areas: how a reactor accident progresses; how existing systems and emergency measures can affect an accident’s outcome; and how an accident would affect the public’s health. The project’s preliminary findings include:

  • Existing resources and procedures can stop an accident, slow it down or reduce its impact before it can affect public health;
  • Even if accidents proceed uncontrolled, they take much longer to happen and release much less radioactive material than earlier analyses suggested; and
  • The analyzed accidents would cause essentially zero immediate deaths and only a very, very small increase in the risk of long-term cancer deaths.

Rod Adams posted his thorough analysis of UNSCEAR here, which Rod summarizes thusly:

  • The individual early fatality risk from SOARCA scenarios is essentially zero.
  • Individual LCF risk from the selected specific, important scenarios is thousands of times lower than the NRC Safety Goal and millions of times lower than the general cancer fatality risk in the United States from all causes, even assuming the LNT dose-response model.

If I may underscore that last: even assuming the LNT dose-response model For more plain English here’s UK environmentalist Mark Lynas in Why Fukushima death toll projections are based on junk science:

As the Health Physics Society explains[1] in non-scientific language anyone can understand:

…the concept of collective dose has come under attack for some misuses. The biggest example of this is in calculating the numbers of expected health effects from exposing large numbers of people to very small radiation doses. For example, you might predict that, based on the numbers given above, the population of the United States would have about 40,000 fatal cancers from background radiation alone. However, this is unlikely to be true for a number of reasons. Recently, the International Council on Radiation Protection issued a position statement saying that the use of collective dose for prediction of health effects at low exposure levels is not appropriate. The reason for this is that if the most highly exposed person receives a trivial dose, then everyone’s dose will be trivial and we can’t expect anyone to get cancer. [my emphasis]

The HPS illustrates this commonsensical statement with the following analogy:

Another way to look at it is that if I throw a 1-gram rock at everyone in the United States then, using the collective dose model, we could expect 270 people to be crushed to death because throwing a one-ton rock at someone will surely kill them. However, we know this is not the case because nobody will die from a 1-gram rock. The Health Physics Society also recommends not making risk estimates based on low exposure levels.

James Conca explains the UNSCEAR 2012 report, which finally drove a stake into the heart of LNT:

The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (UNSCEAR 2012) submitted the report that, among other things, states that uncertainties at low doses are such that UNSCEAR “does not recommend multiplying low doses by large numbers of individuals to estimate numbers of radiation-induced health effects within a population exposed to incremental doses at levels equivalent to or below natural background levels.” (UNDOC/V1255385)

You know, like everyone’s been doing since Chernobyl. Like everyone’s still doing with Fukushima.

Finally, the world may come to its senses and not waste time on the things that aren’t hurting us and spend time on the things that are. And on the people that are in real need. Like the infrastructure and economic destruction wrought by the tsunami, like cleaning up the actual hot spots around Fukushima, like caring for the tens of thousands of Japanese living in fear of radiation levels so low that the fear itself is the only thing that is hurting them, like seriously preparing to restart their nuclear fleet and listening to the IAEA and the U.S. when we suggest improvements.

The advice on radiation in this report will clarify what can, and cannot, be said about low dose radiation health effects on individuals and large populations. Background doses going from 250 mrem (2.5 mSv) to 350 mrem (3.5 mSv) will not raise cancer rates or have any discernable effects on public health. Likewise, background doses going from 250 mrem (2.5 mSv) to 100 mrem (1 mSv) will not decrease cancer rates or effect any other public health issue.

Note – although most discussions are for acute doses (all at once) the same amount as a chronic dose (metered out over a longer time period like a year) is even less effecting. So 10 rem (0.1 Sv) per year, either as acute or chronic, has no observable effect, while 10 rem per month might.

UNSCEAR also found no observable health effects from last year’s nuclear accident in Fukushima. No effects.

The Japanese people can start eating their own food again, and moving back into areas only lightly contaminated with radiation levels that are similar to background in many areas of the world like Colorado and Brazil.

Low-level contaminated soil, leaves and debris in Fukushima Prefecture piling up in temporary storage areas. (Photo by James Hackett, RJLee Group)

The huge waste of money that is passing for clean-up now by just moving around dirt and leaves (NYTimes) can be focused on clean-up of real contamination near Fukushima using modern technologies. The economic and psychological harm wrought by the wrong-headed adoption of linear no-threshold dose effects for doses less than 0.1 Sv (10 rem) has been extremely harmful to the already stressed population of Japan, and to continue it would be criminal.

To recap LNT, the Linear No-Threshold Dose hypothesis is a supposition that all radiation is deadly and there is no dose below which harmful effects will not occur. Double the dose, double the cancers. First put forward after WWII by Hermann Muller, and adopted by the world body, including UNSCEAR, its primary use was as a Cold War bargaining chip to force cessation of nuclear weapons testing. The fear of radiation that took over the worldview was a side-effect (Did Muller Lie?).

(…snip…)

In the end, if we don’t reorient ourselves on what is true about radiation and not on the fear, we will fail the citizens of Japan, Belarus and the Ukraine, and we will continue to spend time and money on the wrong things…

That’s just Jim’s summary – please read his complete essay for the charts, tables and implications for Japan. And did Muller Lie? The evidence seems pretty conclusive that all this enormous waste of resources was based on a lie. Not to mention the fear, and in the case of Fukushima at least a thousand unnecessary deaths due to the panic and mismanagement of the evacuation.

Footnotes:

[1] While link testing, I found that Mark’s HPS link fails – that’s the Internet. Here’s the most recent HPS position statement I could find this morning. Radiation Risk In Perspective: Position Statement Of The Health Physics Society (updated 2010) 

In accordance with current knowledge of radiation health risks, the Health Physics Society recommends against quantitative estimation of health risks below an individual dose1 of 50 millisievert (mSv) in one year or a lifetime dose of 100 mSv above that received from natural sources. Doses from natural background radiation in the United States average about 3 mSv per year. A dose of 50 mSv will be accumulated in the first 17 years of life and 0.25 Sv in a lifetime of 80 years. Estimation of health risk associated with radiation doses that are of similar magnitude as those received from natural sources should be strictly qualitative and encompass a range of hypothetical health outcomes, including the possibility of no adverse health effects at such low levels.

There is substantial and convincing scientific evidence for health risks following high-dose exposures. However, below 50– 100 mSv (which includes occupational and environmental exposures), risks of health effects are either too small to be observed or are nonexistent.

[2] Environmentalist Stewart Brand on the retirement of LNT.

[3] Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) Fifty-ninth session (21-25 May 2012) [PDF]. 

[4] EPA’s decision to allow risk-based decisions to guide responses to radiological events

Our nuclear waste disposal problem (not)

We don’t have a technical nuclear waste problem, but we sure have a political problem. To demonstrate, I’ll repeat a few paragraphs from a June 2013 post:

Negligible risks/impacts

dry cask 190x141As someone who works in the area of dry fuel storage, I can tell you that the answer is pretty obvious. The risks of spent fuel storage are utterly negligible, compared to other risks that society routinely faces in general, and in particular, compared to the risks associated with alternative (fossil) power generation options. No credible scenario for a significant release from dry storage casks exists. Even terrorist attacks would have a minimal public health consequence.

Spent fuel pool risks are also quite low, and neither the 5-year cask requirement nor a repository would do much to reduce those (small) risks, since almost all the heat in spent fuel pools is from the fuel younger than 5 years. The theory of spent fuel pool cladding melt or fire (in the extremely unlikely, hypothetical event of pool drainage) is quite dubious in the first place, and it is being addressed at the few plants where it is thought to be a potential concern. Also of note is the fact that the spent fuel pools did NOT release any significant amount of radioactivity at Fukushima.

The fact is that nuclear waste is generated in a miniscule volume and, unlike the wastes from fossil plants and other industries, it has always been safely and fully contained, has never been released into the environment, and has never caused any harm. Further evaluation needed? In my view, the health/environmental impact evaluation for long-term onsite storage of used fuel could be adequately given in one sentence:

“The public health risks and environmental impacts of long term onsite storage of used nuclear fuel are clearly orders of magnitude less than those of the fossil fueled power generation that would otherwise be used in place of nuclear generation.”

It’s clear that shutting the industry down until a repository is built will result in fossil fuels being used for most of the replacement power.  Even if new plant licensing and plant life extensions are suspended, for a long time, the result will eventually be some reduction in nuclear generation, and will result in some increase in fossil generation.

That was written by senior nuclear engineer Jim Hopf who just happens to be a specialist in this area. Nuclear engineers often refer to “waste” as SNF or Spent Nuclear Fuel. It is not actually spent, because in light water reactors less than 1% of the energy has been extracted in a the Jimmy Carter-mandated once-through fuel cycle. The remaining 99% is awaiting favorable politics to be turned into electricity in advanced reactors such as the IFR. So please do not bury the SNF (high value zero-carbon energy) where it will be difficult to retrieve.

Today I read some useful commentary on how the US got into this mess. I was reading the captioned dialog on Our Energy Policy, when I came to comments by an informed observer, Geoffrey Rothwell, who is Principal Economist, Nuclear Energy Agency of the Organization for Economic Cooperation and Development. That’s the NEA of the OECD.  Geoffrey’s comments:

There are plenty of issues to discuss here, and it seems that the discussion is going off on tangents. For example, I believe that Elliot Taubman meant to say that it isn’t Department of Energy’s fault that Yucca Mountain was defunded. There is a general assumption that the US Government is the Administrative Branch and does not include Congress and the Judiciary; hence, the confusion.
Yucca Mountain was on track until the Environmental Protection (?) Agency determined that the design basis of 10,000 years wasn’t long enough to protect future human species from the present generation’s nuclear spent fuel. Thus, it increased the required design basis to 1,000,000 years. While I can imagine 10,000 years into the future (because we can look back at civilized humans over the last 10,000 years), I cannot (and I daresay no one can) design a facility to function as designed for a million years. This slowed down DOE’s license application to such an extent that the NRC was unable to license the design before the Obama-Reid-Pelosi administration took office in January 2009.

What was the implication? The Nuclear Waste Policy Act states in Section 148(d) of the Nuclear Waste Policy Act, PL 97-425, 42 USC 10168: “(d) LICENSING CONDITIONS–Any license issued by the Commission for a monitored retrievable storage facility under this section shall provide that– (1) construction of such facility may not begin until the Commission has issued a license for the construction of a repository under section 115(d); (2) construction of such facility or acceptance of spent nuclear fuel or high-level radioactive waste shall be prohibited during such time as the repository license is revoked by the Commission or construction of the repository ceases;…” Therefore, without a license for a repository, no interim storage facility could be contemplated by the DOE; hence the waste confidence issue appeared. All Congress must do is strike Section 148(d), but that implies that Congress could do something. I don’t believe that Congress will do anything. If one looks at all previous legislation related to nuclear power policy since the Three Mile Island accident, it requires at least 3 sessions of Congress to act and then Congress will only pass such legislation after the elections, i.e., in lame duck sessions (where nuclear power policy cannot be used by non-incumbent candidates as a political weapon). Therefore, while Senate Bill 1240 is a good start, as long as Harry Reid is in power, nothing will happen. Is there a House counterpart? If not, why not? (Because House leadership wants to see Yucca Mountain licensed so as to avoid throwing $10B in Yucca Mountain characterization down a hole, literally).

Why isn’t reprocessing a solution? Unfortunately, when Congress passed the legislation in 1986 limiting characterization of reprocessing sites to Yucca Mountain (because more powerful members of Congress didn’t want the repository anywhere near their backyards (note, however, there is an operating repository in New Mexico at the Waste Isolation Pilot Project, WIPP), the size of Yucca Mountain was limited to 80,000 metric tons of heavy metal (spent uranium fuel). But 80,000 MTHM doesn’t really have anything to do with the carrying capacity of a repository. The carrying capacity of a repository is limited by the ability of the surrounding geology to dissipate heat over the life of the facility. Once the repository is filled, radioactive decay increases the heat in the repository for hundreds of years before cooling begins. Reprocessing reduces the volume and tonnage of the waste, but doesn’t really change the heat load unless the various radio-isotopes can be separated into separate waste streams. This requires new reprocessing technologies and, unfortunately, there is little money to develop these technologies, which require international cooperation and development (every country with spent nuclear fuel is better off with more effectively reprocessing technologies, but no one country can afford to develop them).

On the other hand, the amount of waste that we are discussing is countable. What is uncountable is the equivalent amount of carbon dioxide. Each gigawatt-year of nuclear electricity produces approximately 20 tons of waste (note 20 tons x 40 years x 100 reactors = 80,000 MTHM: Dave, will you check my math?). Given the weight of these 20 tons, the volume is one-third the size of a reactor core: a countable number. One gigawatt-year of coal electricity produces 1,000,000 tons of CO2 (note: 1M tons x 40 years x 100 gigawatts = 4 billion tons of CO2; there are approximately 5 milligrams of CO2 in 12oz can of soda; therefore, we would need to bury 200,000 cans of soda to sequester 1 ton of CO2, i.e., 800 trillion cans of soda; Dave, please check my math). I exaggerate to make the point that Carbon Capture and Storage is a myth and the Waste Isolation Pilot Project is a reality. Finally, climate change is a reality, Hurricane Sandies don’t care whether you believe in climate change: they will flood the New York subway whether you believe in climate change or not. The issue is whether it is easier to manage spent nuclear fuel or CO2. What do you think?

Regarding the quantity of SNF, Geoffrey says it is “countable”. Another adjective is “minuscule”. 

The Bigger Picture: Nuclear Energy vs. Fossil Fuels

A guest post by senior nuclear engineer Jim Hopf(This post first appeared on ANS Nuclear Cafe June 11, 2013; and on The Energy Collective June 12, 2013):

DC PerspectivesAs I discussed last fall, a federal appeals court ordered the Nuclear Regulatory Commission to perform more thorough evaluations in support of its new Waste Confidence Rule, particularly with respect to the potential impacts of long-term storage of spent fuel at plant sites. While those evaluations are being performed, the NRC has suspended all new plant licensing and plant license renewals.

As discussed in that post, most experts believe that this issue will be resolved, in a timely manner, through additional analysis. Permanent cessation of licensing activity (until a repository is sited or built), or substantial new requirements (such as moving all fuel over 5 years old to dry storage) were considered unlikely. The NRC predicted that it could finish the required evaluations in ~2 years.

Reactions to NRC’s Waste Confidence Evaluations

spent fuel pool 180x119Predictably, anti-nuclear “environmental” groups are claiming that the evaluations that the NRC are doing are insufficient. They say that the evaluations should consider waste being stored on site for centuries, consider risks of terrorist attacks, and risks from severe earthquakes like that which struck Fukushima. They also advocate moving all >5 year spent fuel to dry storage. Finally, they say that 2 years is nowhere near long enough for the evaluations, and that all licensing activity should remain suspended for as long as it takes for “adequate” review to be performed.

And now, the attorneys general from four New England states are joining in, filing a petition for the NRC to do a “more thorough” review of the risks/impacts of long term on-site fuel storage. They are asking the NRC to reject the conclusions and recommendations of its technical staff, because they did not “adequately address the risks of spent fuel storage.” The AGs also state that the NRC’s evaluation did not give enough consideration to two options; requiring that all >5 year cooled fuel be placed into dry storage, and not allowing further production of spent fuel until a repository is constructed. (Yes, you heard that right, the AGs from four states are actually asking the NRC to consider shutting down the nuclear power industry.)

What are they after?

One hopes that all the AGs are asking for is for the NRC to do more homework to provide a stronger case. That would allow them to tell the public that they forced the NRC to do a “better job” and look out for their safety. Or perhaps, they’re hoping for the 5-year dry cask storage requirement, allowing them to point to a tangible “improvement” that they can take credit for (or perhaps to just extract a pound of flesh from the industry). One really hopes that they don’t really want the industry to shut down.

In my view, is it’s not that those risks (of long term storage) have not been evaluated. It’s that the people in question don’t like the answer. In other words, they will never be satisfied until the “evaluation” gives them the answer they want, which is that the risks are unacceptable, or that the industry must take some extensive, expensive, and burdensome actions.

Negligible risks/impacts

dry cask 190x141As someone who works in the area of dry fuel storage, I can tell you that the answer is pretty obvious. The risks of spent fuel storage are utterly negligible, compared to other risks that society routinely faces in general, and in particular, compared to the risks associated with alternative (fossil) power generation options. No credible scenario for a significant release from dry storage casks exists. Even terrorist attacks would have a minimal public health consequence.

Spent fuel pool risks are also quite low, and neither the 5-year cask requirement nor a repository would do much to reduce those (small) risks, since almost all the heat in spent fuel pools is from the fuel younger than 5 years. The theory of spent fuel pool cladding melt or fire (in the extremely unlikely, hypothetical event of pool drainage) is quite dubious in the first place, and it is being addressed at the few plants where it is thought to be a potential concern. Also of note is the fact that the spent fuel pools did NOT release any significant amount of radioactivity at Fukushima.

The fact is that nuclear waste is generated in a miniscule volume and, unlike the wastes from fossil plants and other industries, it has always been safely and fully contained, has never been released into the environment, and has never caused any harm. Further evaluation needed? In my view, the health/environmental impact evaluation for long-term onsite storage of used fuel could be adequately given in one sentence:

“The public health risks and environmental impacts of long term onsite storage of used nuclear fuel are clearly orders of magnitude less than those of the fossil fueled power generation that would otherwise be used in place of nuclear generation.”

It’s clear that shutting the industry down until a repository is built will result in fossil fuels being used for most of the replacement power.  Even if new plant licensing and plant life extensions are suspended, for a long time, the result will eventually be some reduction in nuclear generation, and will result in some increase in fossil generation.

San Onofre

san onofre 190x148Meanwhile, in Southern California, the San Onofre plant has been shut down for years due to tube failure problems with its steam generators (as discussed on this site here and here). The NRC has required that the plant remain shut until all the issues are thoroughly investigated; a process that has been taking a very long time. The NRC has been under a lot of political pressure to take its time and do a “thorough” investigation.

Steam generator replacement has been discussed. The utility also proposed running one unit at 70-percent power, based on evaluations showing that it would not result in significant tube vibration and degradation. The NRC has decided to allow public hearings on that (70-percent power) restart request, and having it require a license amendment is even being discussed. In order to meet peak power demand while San Onofre remains shut, two ~50 year old, highly polluting fossil plants in Huntington Beach were taken out of out of retirement and fired up.

In terms of the potential consequences of steam generator tube failure, it seems (based on what I’ve read) that the notion of steam generator tube failures causing a meltdown (i.e., core damage) is a real stretch. The only real potential is that the sudden failure of a large number of tubes could cause a significant fraction of the primary coolant loop water (and the radioactivity therein) to be released into the environment. (Note that even nuclear opponent Arnie Gunderson did not say that steam generator tube failures could cause a “meltdown” in this article.)

While one can only guess what the political/public reaction to such a release would be, its actual health consequences would be negligible to non-existent, particularly in comparison to the ongoing impacts of fossil generation. In reality, what is most likely to happen if things didn’t work out and the tubes started to fail is that some tubes would fail, the plant operators would notice the increase in secondary side activity, and they would safely shut the plant down.

Not only have old, dirty fossil fueled plants been fired up while the whole San Onofre saga played out, but the utility has just announced that it will close both of the reactors due to this issue. This will result in ~2000 MW of additional fossil fueled generation for several decades.

Blinders – Not looking at big picture

huntington beach power plant 190x116The common theme for these two stories is that nuclear risks are being evaluated in isolation. Overall impacts, such as the effects of reduced nuclear on the overall power generation system, are not being considered. Nuclear operations are held to a standard of perfection, or some arbitrary standard that regulators and other politically powerful stakeholders view as being adequate. That, as opposed to being compared to other risks accepted by society or, more importantly, the risks related to the alternative (primarily fossil) generation that would be used in place of nuclear.

Again, what are these people seeking from another several years of waste storage evaluations, when it is obvious, by cursory inspection, that the risks of waste storage are negligible compared to those of fossil generation alternatives? Perhaps they hope that the evaluations will uncover practical steps that could reduce the risks even further. At least the dry storage proposal is ostensibly that kind of step, although whether it is worth the cost and effort is highly debatable.

New England is home to many gross-polluting coal plants (many of which make the “Dirty Dozen” list of top polluters). If those states’ AGs really cared about their public’s health risks, they’d focus their efforts on getting those plants cleaned up or closed. They wouldn’t be wasting any time or effort on negligible risks associated with used nuclear fuel.

Why is the mindset that San Onofre cannot be reopened until everything is completely analyzed, understood, and resolved, and until the chance of steam generator failure is all but eliminated? And if all the hoops result in the plant’s closure, so be it. Where was the environmental impact evaluation that compared the risk of running San Onofre to the health risks of operating two 50-year old fossil plants that are located in a relatively high population density area? Given the limited health consequences of any credible steam generator failure scenario, it seems clear what such an evaluation would show.

It is likely that the operation of the Huntington Beach fossil plants has already had a larger public health impact than what would occur even in the event of a worst-case steam generator failure scenario (i.e., release of primary coolant loop activity). And finally, how about the consequences of the plant being closed?  Have they compared the risks of steam generator failure (low probability times limited consequence) to several decades worth of fossil fueled power generation? How about global warming impact?

Less nuclear = More fossil

smokestacks 150x100One thing that people need to be clear on is that using less nuclear power primarily results in increased use of fossil fuels. That’s certainly what’s happening in Japan. (They’re turning to coal to replace nuclear, since imported oil and gas are costing too much.) In Germany, where a huge effort is being made on renewables, coal generation is being significantly increased to offset the loss of nuclear. Even if Germany did succeed in building enough renewable generation to offset the lost nuclear generation, they’d still effectively be choosing fossil fuels over nuclear, since they could have used the renewables to replace fossil instead.

Reducing nuclear use will not cause renewable generation to increase. Construction of renewable capacity is primarily driven by government mandate and/or large subsidy. The final fraction of renewable generation will likely be close to the maximum practical amount based on intermittentcy limitations.

The only real question is whether the net effect of reduced nuclear would primarily be an increase of gas or coal use. If one assumes future environmental regulations that will limit the use of coal, then arguing that nuclear will be replaced by gas may be reasonable (especially in California). On the other hand, unless coal is limited by policy, one could argue that, in the end, reduced nuclear would mean more coal since the supply of gas will reach its limit at some point. Use of gas to replace nuclear would drive up the price of gas, which would result in more existing coal plants remaining open or operating more hours per year. This is already happening in the United States, now that gas prices have risen somewhat from historic lows. This would result in a net effect of nuclear being replaced by coal.

When pressed, nuclear opponents usually cede that fossil fuels are worse than nuclear (since the facts are actually pretty clear on that point). And yet, it’s generally the case that nuclear plants are closed when anything is out of sorts, and are required to address all the issues before they are allowed to restart. In the interim, fossil fuels are always used in its place, regardless of their much larger health and environmental risks.

You don’t hear people say, although the situation with San Onofre isn’t ideal, that we must keep it operating while the issues are resolved, since firing up old fossil fueled generators would have an unacceptable impact. A no-compromise philosophy is taken for nuclear risks (when anything is not just right), whereas reducing the known, ongoing health risks and climate impacts of fossil generation seems to be treated more like an aspirational goal. Something that we really should do, and will get around to some day (kind of like a New Year’s losing weight resolution). When anything happens, fossil fuels are always the backstop, or default. Although fossil fuels’ impacts are known to be vastly larger, they simply aren’t taken that seriously by our society; definitely not in comparison to our response to any issues with nuclear.

In any event, any REAL environmental impact evaluation would fully consider such issues. It would evaluate the impact of any reduction in nuclear generation, due to waste issues, etc., on the overall power sector. It would objectively compare all the risks of nuclear generation (including those of on-site used fuel storage, or imperfect steam generators, etc.) to the risks and impacts of the generation sources that are likely to be used in its place. If such evaluations were performed, and were objective, nuclear would have nothing to fear.

___________________________

Hopf

 

Jim Hopf is a senior nuclear engineer with more than 20 years of experience in shielding and criticality analysis and design for spent fuel dry storage and transportation systems. He has been involved in nuclear advocacy for 10+ years, and is a member of the ANS Public Information Committee. He is a regular contributor to the ANS Nuclear Cafe.